1,251 research outputs found

    A Simple Landscape-Scale Test of a Spatially Explicit Population Model: Patch Occupancy in Fragmented South-Eastern Australian Forests

    Get PDF
    The results of a landscape-scale test of ALEX, a widely used metapopulation model for Population Viability Analysis (PVA), are described. ALEX was used to predict patch occupancy by the laughing kookaburra and the sacred kingfisher in patches of eucalypt forest in south-eastern Australia. These predictions were compared to field surveys to determine the accuracy of the model. Predictions also were compared to a "naïve" null model assuming no fragmentation effects. The naive null model significantly over-predicted the number of eucalypt patches occupied by the sacred kingfisher, but the observed patch occupancy was not significantly different from that predicted using ALEX. ALEX produced a better fit to the field data than the naive null model for the number of patches occupied by the laughing kookaburra. Nevertheless, ALEX still significantly over-predicted the number of occupied patches, particularly remnants dominated by certain forest types – ribbon gum and narrow-leaved peppermint. The predictions remained significantly different from observations, even when the habitat quality of these patches was reduced to zero. Changing the rate of dispersal improved overall predicted patch occupancy, but occupancy rates for the different forest types remained significantly different from the field observations. The lack of congruence between field data and model predictions could have arisen because the laughing kookaburra may move between an array of patches to access spatially separated food and nesting resources in response to fragmentation. Alternatively, inter-specific competition may be heightened in a fragmented habitat. These types of responses to fragmentation are not incorporated as part of traditionally applied metapopulation models. Assessments of predictions from PVA models are rare but important because they can reveal the types of species for which forecasts are accurate and those for which they are not. This can assist the collection of additional empirical data to identify important factors affecting population dynamics

    Tree seedling shade tolerance arises from interactions with microbes and is mediated by functional traits

    Get PDF
    Shade tolerance is a central concept in forest ecology and strongly influences forest community dynamics. However, the plant traits and conditions conferring shade tolerance are yet to be resolved. We propose that shade tolerance is shaped not only by responses to light but also by a species’ defense and recovery functional traits, soil microbial communities, and interactions of these factors with light availability. We conducted a greenhouse experiment for three temperate species in the genus Acer that vary in shade tolerance. We grew newly germinated seedlings in two light levels (2% and 30% sun) and controlled additions of microbial filtrates using a wet-sieving technique. Microbial filtrate treatments included: <20 µm, likely dominated by pathogenic microbes; 40-250 µm, containing arbuscular mycorrhizal fungi (AMF); combination, including both filtrate sizes; and sterilized combination. We monitored survival for nine weeks and measured fine root AMF colonization, hypocotyl phenolics, stem lignin, and stem+root nonstructural carbohydrates (NSC) at three-week intervals. We found that differences in seedling survival between low and high light only occurred when microbes were present. AMF colonization, phenolics, and NSC generally increased with light. Phenolics were greater with <20 µm microbial filtrate, suggesting that soil-borne pathogens may induce phenolic production; and NSC was greater with 40-250 µm filtrate, suggesting that mycorrhizal fungi may induce NSC production. Across species, microbe treatments, and light availability, survival increased as phenolics and NSC increased. Therefore, shade tolerance may be explained by interactions among soil-borne microbes, seedling traits, and light availability, providing a more mechanistic and trait-based explanation of shade tolerance and thus forest community dynamics

    Literature-based reading instruction: Problems, possibilities & polemics in the struggle to change

    Get PDF
    Concerns are being raised in both professional literature as well as in the popular press regarding certain aspects of the literature-based movement. Here we report on findings from a longitudinal study of a group of first -grade teachers who have been attempting (with varying degrees of success)to introduce literature-based teaching strategies into their classrooms. We inspect the experiences of these teachers in relation to four areas of concern that have been raised regarding literature-based teaching: 1. skills instruction; 2.guided reading strategies; 3. literature selection;and 4. thematic teaching (or curriculum integration). We describe classroom practices and the 9 problems and possibilities associated with teacher change in each of the four areas

    Differential Requirement for Satellite Cells During Overload-Induced Muscle Hypertrophy in Growing Versus Mature Mice

    Get PDF
    Background: Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Methods: Pax7CreER-R26RDTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6–9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Results: Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p \u3c 0.05). Satellite cells did not recover in SC- mice after overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p \u3c 0.05), and mature SC- mice (p \u3c 0.05). In contrast, muscle fiber hypertrophy was prevented in young SC- mice. Muscle fiber number increased only in mature mice after overload (p \u3c 0.05), and eMyHC expression was variable, specifically in mature SC+ mice. Conclusions: Reliance on satellite cells for overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice

    External validation of a mammography-derived AI-based risk model in a U.S. breast cancer screening cohort of White and Black women

    Get PDF
    Despite the demonstrated potential of artificial intelligence (AI) in breast cancer risk assessment for personalizing screening recommendations, further validation is required regarding AI model bias and generalizability. We performed external validation on a U.S. screening cohort of a mammography-derived AI breast cancer risk model originally developed for European screening cohorts. We retrospectively identified 176 breast cancers with exams 3 months to 2 years prior to cancer diagnosis and a random sample of 4963 controls from women with at least one-year negative follow-up. A risk score for each woman was calculated via the AI risk model. Age-adjusted areas under the ROC curves (AUCs) were estimated for the entire cohort and separately for White and Black women. The Gail 5-year risk model was also evaluated for comparison. The overall AUC was 0.68 (95% CIs 0.64-0.72) for all women, 0.67 (0.61-0.72) for White women, and 0.70 (0.65-0.76) for Black women. The AI risk model significantly outperformed the Gail risk model for all wome

    The N2K Consortium. II. A Transiting Hot Saturn Around HD 149026 With a Large Dense Core

    Get PDF
    Doppler measurements from Subaru and Keck have revealed radial velocity variations in the V=8.15, G0IV star HD 149026 consistent with a Saturn-Mass planet in a 2.8766 day orbit. Photometric observations at Fairborn Observatory have detected three complete transit events with depths of 0.003 mag at the predicted times of conjunction. HD 149026 is now the second brightest star with a transiting extrasolar planet. The mass of the star, based on interpolation of stellar evolutionary models, is 1.3 +/- 0.1 solar masses; together with the Doppler amplitude, K=43.3 m s^-1, we derive a planet mass Msin(i)=0.36 Mjup, and orbital radius of 0.042 AU. HD 149026 is chromospherically inactive and metal-rich with spectroscopically derived [Fe/H]=+0.36, Teff=6147 K, log g=4.26 and vsin(i)=6.0 km s^-1. Based on Teff and the stellar luminosity of 2.72 Lsun, we derive a stellar radius of 1.45 Rsun. Modeling of the three photometric transits provides an orbital inclination of 85.3 +/- 1.0 degrees and (including the uncertainty in the stellar radius) a planet radius of 0.725 +/- 0.05 Rjup. Models for this planet mass and radius suggest the presence of a ~67 Mearth core composed of elements heavier than hydrogen and helium. This substantial planet core would be difficult to construct by gravitational instability.Comment: 25 pages, 5 figures, accepted by the Astrophysical Journa

    Racial and ethnic disparities in cervical cancer screening from three U.S. healthcare settings

    Get PDF
    INTRODUCTION: This study sought to characterize racial and ethnic disparities in cervical cancer screening and follow-up of abnormal findings across 3 U.S. healthcare settings. METHODS: Data were from 2016 to 2019 and were analyzed in 2022, reflecting sites within the Multi-level Optimization of the Cervical Cancer Screening Process in Diverse Settings & Populations Research Center, part of the Population-based Research to Optimize the Screening Process consortium, including a safety-net system in the southwestern U.S., a northwestern mixed-model system, and a northeastern integrated healthcare system. Screening uptake was evaluated among average-risk patients (i.e., no previous abnormalities) by race and ethnicity as captured in the electronic health record, using chi-square tests. Among patients with abnormal findings requiring follow-up, the proportion receiving colposcopy or biopsy within 6 months was reported. Multivariable regression was conducted to assess how clinical, socioeconomic, and structural characteristics mediate observed differences. RESULTS: Among 188,415 eligible patients, 62.8% received cervical cancer screening during the 3-year study period. Screening use was lower among non-Hispanic Black patients (53.2%) and higher among Hispanic (65.4%,) and Asian/Pacific Islander (66.5%) than among non-Hispanic White patients (63.5%, all p\u3c0.001). Most differences were explained by the distribution of patients across sites and differences in insurance. Hispanic patients remained more likely to screen after controlling for a variety of clinical and sociodemographic factors (risk ratio=1.14, CI=1.12, 1.16). Among those receiving any screening test, Black and Hispanic patients were more likely to receive Pap-only testing (versus receiving co-testing). Follow-up from abnormal results was low for all groups (72.5%) but highest among Hispanic participants (78.8%, p\u3c0.001). CONCLUSIONS: In a large cohort receiving care across 3 diverse healthcare settings, cervical cancer screening and follow-up were below 80% coverage targets. Lower screening for Black patients was attenuated by controlling for insurance and site of care, underscoring the role of systemic inequity. In addition, it is crucial to improve follow-up after abnormalities are identified, which was low for all populations

    Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence

    Get PDF
    Bis-(3 ',5 ') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K-d similar to 2 mu M). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence
    • …
    corecore