49 research outputs found

    Phenotypic spectrum in osteogenesis imperfecta due to mutations in TMEM38B: unravelling a complex cellular defect.

    Get PDF
    Context: Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Objectives: Clinical and bone material phenotype description and osteoblast differentiation studies. Design and Setting: Natural history study in paediatric research centres. Patients: Eight patients with type XIV OI. Main Outcome Measures: Clinical examinations included: bone mineral density, radiographs, echocardiography and muscle biopsy. Bone biopsy samples (n=3) were analysed using histomorphometry, quantitative backscattered electron microscopy and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Results: The clinical phenotype of type XIV OI ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband L1-L4 bone density Z-score was reduced (median -3.3 [range -4.77 to +0.1; n=7]), and increased by +1.7 (1.17 to 3.0; n=3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased late and mineralization-related markers. Predominance of TRIC-B over TRIC-A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. Conclusions: OI type XIV has a bone histology, matrix mineralization and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities

    Chromosome 20p11.2 deletions cause congenital hyperinsulinism via the loss of FOXA2 or its regulatory elements

    Get PDF
    This is the final version. Available on open access from Springer Nature via the DOI in this recordData availability: All non-clinical data analyzed during this study are included in this article (and its Supplementary Information). The 20p11.2 variants reported in this study were uploaded to ClinVar (SUB14235415). Clinical and genotype data can be used to identify individuals and are therefore available only through collaboration to experienced teams working on approved studies examining the mechanisms, cause, diagnosis and treatment of diabetes and other beta cell disorders. Requests for collaboration will be considered by a steering committee following an application to the Genetic Beta Cell Research Bank (https://www.diabetesgenes.org/current-research/genetic-beta-cell-research-bank/). Contact by email should be directed to S. Flanagan ([email protected]). All requests for access to data will be responded to within 14 d. Accession codes and DOI numbers for all ChIP-seq, ATAC-seq, RNA-seq and scRNA-seq datasets are provided in Supplementary Table 2. We used the Genome Reference Consortium Human Build 37 (GRCh37) to annotate genetic data (accession number GCF_000001405.13). Details of this assembly are provided at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/.Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI. Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic HI.Wellcome Trus

    Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement

    Get PDF
    This Consensus Statement covers recommendations for the diagnosis and management of patients with pseudohypoparathyroidism (PHP) and related disorders, which comprise metabolic disorders characterized by physical findings that variably include short bones, short stature, a stocky build, early-onset obesity and ectopic ossifications, as well as endocrine defects that often include resistance to parathyroid hormone (PTH) and TSH. The presentation and severity of PHP and its related disorders vary between affected individuals with considerable clinical and molecular overlap between the different types. A specific diagnosis is often delayed owing to lack of recognition of the syndrome and associated features. The participants in this Consensus Statement agreed that the diagnosis of PHP should be based on major criteria, including resistance to PTH, ectopic ossifications, brachydactyly and early-onset obesity. The clinical and laboratory diagnosis should be confirmed by a molecular genetic analysis. Patients should be screened at diagnosis and during follow-up for specific features, such as PTH resistance, TSH resistance, growth hormone deficiency, hypogonadism, skeletal deformities, oral health, weight gain, glucose intolerance or type 2 diabetes mellitus, and hypertension, as well as subcutaneous and/or deeper ectopic ossifications and neurocognitive impairment. Overall, a coordinated and multidisciplinary approach from infancy through adulthood, including a transition programme, should help us to improve the care of patients affected by these disorders

    Alfacalcidol/calcium

    No full text

    Monitoring skull base abnormalities in children with osteogenesis imperfecta – Review of current practice and a suggested clinical pathway

    No full text
    Objectives In the context of a lack of national consensus on the benefits of skull base imaging in children with osteogenesis imperfecta (OI), this study aims to analyse and correlate the clinical symptoms and radiological images of children with severe OI. Methods A retrospective case notes and image analysis was carried out on children with complex OI between 2012 and 2018 at a specialist tertiary centre. Data were collected on patient demographic factors, clinical data, imaging findings (presence of Wormian bones, platybasia, basilar impression (McGregor's technique) and basilar invagination (McRae's technique)), and clinical features at the time of imaging. Results Of the 127 patients in the OI database, 94 were included. A total of 321 radiographs, 21 CT scans and 39 MRI scans were analysed. Average frequency of radiographs was 8 per 10 years. Of the 94 patients, 58 (62%), 10 (11%), 1 (1%) demonstrated platybasia, basilar impression, and basilar invagination, respectively. Of the radiographs analysed, platybasia, basilar impression, basilar invagination, and the presence of Wormian bones, could not be evaluated in 71 (22.3%), 48 (15.2%), 61 (19.5%) and 28 (9.4%) radiographs respectively (due to poor positioning, anatomical abnormalities, and poor image quality). Of the 140 radiographs with platybasia, 17 (12%) also demonstrated basilar impression compared to only 3 (2.9%) out of the 99 without platybasia (p = 0.03). No significant associations were seen between the presence of Wormian bones and basilar impression. Of the 39 MRIs, additional information on CSF flow rate, spinal cord signal and cerebellar morphology was reported in 14 (36%). There was a lack of concordance between MRI and matched radiographs in 7.1% (1/14) and 36% (5/14) for platybasia and basilar impression respectively, with full concordance for basilar invagination. Fewer than 5% had positive clinical symptoms/signs at the time of imaging; 2% (7/321) had macrocephaly, 0.6% (2/321) headache, all other neurological features were absent). Clinical features were not documented in >85% of patients. Conclusion The apparent low prevalence of clinical symptoms and signs and of radiologically identified cranio-cervical abnormalities, suggests that current levels of serial imaging may be excessive. Until larger prospective studies clarify these issues, we suggest a clinical pathway for base of skull imaging which proposes a risk stratification approach to radiographic frequency and suggests parameters for proceeding to MRI

    Non-collagen pathogenic variants resulting in the osteogenesis imperfecta phenotype in children: a single-country observational cohort study

    No full text
    Background/Objectives: In England, children (0–18 years) with severe, complex and atypical osteogenesis imperfecta (OI) are managed by four centres (Birmingham, Bristol, London, Sheffield) in a ‘Highly Specialised Service’ (HSS OI); affected children with a genetic origin for their disease that is not in COL1A1 or COL1A2 form the majority of the ‘atypical’ group, which has set criteria for entry into the service. We have used the data from the service to assess the range and frequency of non-collagen pathogenic variants resulting in OI in a single country. Methods: Children with atypical OI were identified through the HSS OI service database. All genetic testing for children with OI in the service were undertaken at the Sheffield Diagnostic Genetics Service. Variant data were extracted and matched to individual patients. This study was done as part of a service evaluation project registered with the Sheffield Children’s Hospital Clinical Governance Department. Results: One hundred of 337 children in the HSS met the ‘atypical’ criteria. Eighty have had genetic testing undertaken; 72 had genetic changes detected, 67 in 13 genes known to be causative for OI. The most frequently affected genes were IFITM5 (22), P3H1 (12), SERPINF1 (8) and BMP1 (6). Conclusion: Among children with more severe forms of OI (approximately one-third of all children with OI), around 20% have pathogenic variants in non-collagen genes. IFITM5 was the most commonly affected gene, followed by genes within the P3H1 complex. These data provide additional information regarding the likelihood of different genetic origins of the disease in children with OI, which may influence clinical care
    corecore