790 research outputs found

    Entangling power of baker's map: Role of symmetries

    Full text link
    The quantum baker map possesses two symmetries: a canonical "spatial" symmetry, and a time-reversal symmetry. We show that, even when these features are taken into account, the asymptotic entangling power of the baker's map does not always agree with the predictions of random matrix theory. We have verified that the dimension of the Hilbert space is the crucial parameter which determines whether the entangling properties of the baker are universal or not. For power-of-two dimensions, i.e., qubit systems, an anomalous entangling power is observed; otherwise the behavior of the baker is consistent with random matrix theories. We also derive a general formula that relates the asymptotic entangling power of an arbitrary unitary with properties of its reduced eigenvectors.Comment: 5 page

    The Poincare-Birkhoff theorem in Quantum Mechanics

    Full text link
    Quantum manifestations of the dynamics around resonant tori in perturbed Hamiltonian systems, dictated by the Poincar\'e--Birkhoff theorem, are shown to exist. They are embedded in the interactions involving states which differ in a number of quanta equal to the order of the classical resonance. Moreover, the associated classical phase space structures are mimicked in the quasiprobability density functions and their zeros.Comment: 5 pages, 3 figures, Full resolution figures available at http://www.df.uba.ar/users/wisniaki/publications.htm

    Multifractal eigenstates of quantum chaos and the Thue-Morse sequence

    Full text link
    We analyze certain eigenstates of the quantum baker's map and demonstrate, using the Walsh-Hadamard transform, the emergence of the ubiquitous Thue-Morse sequence, a simple sequence that is at the border between quasi-periodicity and chaos, and hence is a good paradigm for quantum chaotic states. We show a family of states that are also simply related to Thue-Morse sequence, and are strongly scarred by short periodic orbits and their homoclinic excursions. We give approximate expressions for these states and provide evidence that these and other generic states are multifractal.Comment: Substantially modified from the original, worth a second download. To appear in Phys. Rev. E as a Rapid Communicatio

    Quantum Process Tomography of the Quantum Fourier Transform

    Full text link
    The results of quantum process tomography on a three-qubit nuclear magnetic resonance quantum information processor are presented, and shown to be consistent with a detailed model of the system-plus-apparatus used for the experiments. The quantum operation studied was the quantum Fourier transform, which is important in several quantum algorithms and poses a rigorous test for the precision of our recently-developed strongly modulating control fields. The results were analyzed in an attempt to decompose the implementation errors into coherent (overall systematic), incoherent (microscopically deterministic), and decoherent (microscopically random) components. This analysis yielded a superoperator consisting of a unitary part that was strongly correlated with the theoretically expected unitary superoperator of the quantum Fourier transform, an overall attenuation consistent with decoherence, and a residual portion that was not completely positive - although complete positivity is required for any quantum operation. By comparison with the results of computer simulations, the lack of complete positivity was shown to be largely a consequence of the incoherent errors during the quantum process tomography procedure. These simulations further showed that coherent, incoherent, and decoherent errors can often be identified by their distinctive effects on the spectrum of the overall superoperator. The gate fidelity of the experimentally determined superoperator was 0.64, while the correlation coefficient between experimentally determined superoperator and the simulated superoperator was 0.79; most of the discrepancies with the simulations could be explained by the cummulative effect of small errors in the single qubit gates.Comment: 26 pages, 17 figures, four tables; in press, Journal of Chemical Physic

    Probing the quantum phase transition in the Dicke model through mechanical vibrations

    Full text link
    This paper is concerned with quantum dynamics of a system coupled to a critical reservoir. In this context, we employ the Dicke model which is known to exhibit a super radiant quantum phase transition (QPT) and we allow one of the mirrors to move under a linear restoring force. The electromagnetic field couples to the movable mirror though radiation pressure just like in typical optomechanical setups. We show that, in the thermodynamical limit, the super-radiant phase induces a classical driving force on the mirror without causing decoherence.Comment: 6 pages, 3 figures, final versio
    corecore