1,076 research outputs found

    Behavior of the current in the asymmetric quantum multibaker map

    Full text link
    Recently, a new mechanism leading to purely quantum directed transport in the asymmetric multibaker map has been presented. Here, we show a comprehensive characterization of the finite asymptotic current behavior with respect to the hh value, the shape of the initial conditions, and the features of the spectrum. We have considered different degrees of asymmetry in these studies and we have also analyzed the classical and quantum phase space distributions for short times in order to understand the mechanisms behind the generation of the directed current.Comment: 8 pages, 8 figure

    Irreversible Quantum Baker Map

    Get PDF
    We propose a generalization of the model of classical baker map on the torus, in which the images of two parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting in the space of density matrices. We investigate spectral properties of this super-operator and their link with the increase of the entropy of initially pure states.Comment: 4 pages, 3 figures include

    Qubits in phase space: Wigner function approach to quantum error correction and the mean king problem

    Full text link
    We analyze and further develop a new method to represent the quantum state of a system of nn qubits in a phase space grid of N×NN\times N points (where N=2nN=2^n). The method, which was recently proposed by Wootters and co--workers (Gibbons {\it et al.}, quant-ph/0401155), is based on the use of the elements of the finite field GF(2n)GF(2^n) to label the phase space axes. We present a self--contained overview of the method, we give new insights on some of its features and we apply it to investigate problems which are of interest for quantum information theory: We analyze the phase space representation of stabilizer states and quantum error correction codes and present a phase space solution to the so--called ``mean king problem''.Comment: 18 pages, 16 figures; typos fixed, some minor corrections, figures of the circuits were change

    Level velocity statistics of hyperbolic chaos

    Get PDF
    A generalized version of standard map is quantized as a model of quantum chaos. It is shown that, in hyperbolic chaotic regime, second moment of quantum level velocity is 1/\sim 1/\hbar as predicted by the random matrix theory.Comment: 11 pages, 4 figure

    Multifractal eigenstates of quantum chaos and the Thue-Morse sequence

    Full text link
    We analyze certain eigenstates of the quantum baker's map and demonstrate, using the Walsh-Hadamard transform, the emergence of the ubiquitous Thue-Morse sequence, a simple sequence that is at the border between quasi-periodicity and chaos, and hence is a good paradigm for quantum chaotic states. We show a family of states that are also simply related to Thue-Morse sequence, and are strongly scarred by short periodic orbits and their homoclinic excursions. We give approximate expressions for these states and provide evidence that these and other generic states are multifractal.Comment: Substantially modified from the original, worth a second download. To appear in Phys. Rev. E as a Rapid Communicatio

    Clinical severity instruments

    Get PDF

    Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream

    Get PDF
    Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3 −) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water concentrations at 30 min intervals over the snowmelt period (March 21–May 13, 2009) at a 40.5 hectare forested watershed at Sleepers River, Vermont. We also collected discrete samples for laboratory absorbance and fluorescence as well as δ18O–NO3 − isotopes to help interpret the drivers of variable NO3 − and FDOM concentrations measured in situ. In situ data revealed seasonal, event and diurnal patterns associated with hydrological and biogeochemical processes regulating stream NO3 − and FDOM concentrations. An observed decrease in NO3 − concentrations after peak snowmelt runoff and muted response to spring rainfall was consistent with the flushing of a limited supply of NO3 − (mainly from nitrification) from source areas in surficial soils. Stream FDOM concentrations were coupled with flow throughout the study period, suggesting a strong hydrologic control on DOM concentrations in the stream. However, higher FDOM concentrations per unit streamflow after snowmelt likely reflected a greater hydraulic connectivity of the stream to leachable DOM sources in upland soils. We also observed diurnal NO3 − variability of 1–2 μmol l−1 after snowpack ablation, presumably due to in-stream uptake prior to leafout. A comparison of NO3 − and dissolved organic carbon yields (DOC, measured by FDOM proxy) calculated from weekly discrete samples and in situ data sub-sampled daily resulted in small to moderate differences over the entire study period (−4 to 1% for NO3 − and −3 to −14% for DOC), but resulted in much larger differences for daily yields (−66 to +27% for NO3 − and −88 to +47% for DOC, respectively). Despite challenges inherent in in situ sensor deployments in harsh seasonal conditions, these data provide important insights into processes controlling NO3 − and FDOM in streams, and will be critical for evaluating the effects of climate change on snowmelt delivery to downstream ecosystems
    corecore