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Abstract
A generalized version of standard map is quantized as a model of quantum chaos. It is shown

that, in hyperbolic chaotic regime, second moment of quantum level velocity is ∼ 1/h̄ as predicted

by the random matrix theory.
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I. INTRODUCTION

Chaotic systems are characterized by positive lyapunov exponents such that in phase
space neighbourhood trajectories diverge exponentially. Among the chaotic systems there
are special class of systems which are completely chaotic or hyperbolic [1]. Phase space of
hyperbolic systems has only unstable orbits as there are expanding and contracting real
directions with positive and negative lyapunov exponents respectively. Area preserving
maps like cat map and baker map are examples of hyperbolic systems. Even the well known
standard map of kicked rotor, a text book paradigm of Hamiltonian chaos [2], is not proven
to be hyperbolic even for strong external kick strength.

In the study of chaotic quantum systems, it is of fundamental interest to characterize
highly chaotic (but not known to be hyperbolic) and hyperbolic chaotic regimes in quantum
domain. This forms our motivation here, and to pursue further it would be more appropriate
to quantize a single dynamical system which has parameters for highly chaotic and hyperbolic
chaotic regimes. In one of our earlier works, a generalized version of standard map was
introduced to study the dynamics of a kicked particle trapped inside an one dimensional
infinite square well potential [3]. The generalization, arising from length scales namely well
width and field wave length, has parameters to fulfill the present requirement. With our
knowledge, there is no other single system possessing parameters for the above mentioned
classical regimes.

In quantum domain, dynamics of levels in parameter space is known to have manifesta-
tions of classical complexity. While quantum levels cross each other for regular case, they
exhibit avoided crossings when underlying classical dynamics is chaotic. Level dynamics
can be described by level velocity wherein system parameter plays the role of pseudo-time.
In Ref. [4] the notion of curvature i.e., second derivative of levels with parameter, is in-
troduced to quantify the avoided crossings. It is known that the curvature distribution of
chaotic system follows an universal behaviour [5].

In this connection, one another quantity of importance is the second moment of level
velocity. A semiclassical analysis of kicked system shows that second moment is the sum
of all classical time correlations of the kicking potential, such that lowest (zeroth) order
correlation being the Random Matrix Theory (RMT) predicted second moment [6]. It is
also known for quantized standard map that, in highly chaotic regime there are systematic
deviations between second moment and the corresponding RMT prediction. The deviations
are thus related to the non-vanishing higher order classical time correlations [6].

In the present work, we introduce quantum version of a generalized standard map as a
model of quantum chaos to study the level velocity statistics. In particular, we compute
the second moment and compare with the RMT prediction in order to characterize different
chaotic regimes.

II. THE MODEL

A. Classical system

Considering a particle trapped in a one dimensional infinite square well potential V0(q)
of unit width (hard walls at q = ±1/2), which experiences a periodic kick from an external
pulsed field. The Hamiltonian is
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H̃ =
p2

2
+ V0(q) +

kλ

4π2
cos

(

2πq

λ

)

∑

j

δ(j − t) (1)

and underlying kick to kick dynamics of the particle is equivalent to discrete dynamics
described by a dimensionless area-preserving mapping:

pj+1 = pj +
k

2π
sin(2πrqj)

qj+1 = qj + pj+1 (2)

which is defined on 2-torus i.e., a unit square [−1/2, 1/2)× [−1/2, 1/2) with periodic bound-
aries. Here r = 1/λ is ratio of two length scales of the system namely, well width and field
wavelength; k is effective strength of the kick. This is the Generalized Standard Map (GSM)
which was introduced in our earlier studies on the above Hamiltonian [3].

GSM is continuous when r is integer and discontinuous otherwise. One can immediately
recognize that widely studied standard map of kicked rotor is a special case (r = 1) of GSM.
Since the standard map is a continuous map, for small (k < 1) dynamics is predominantly
regular wherein many rotational invariant circles (also called as KAM tori) are interspersed
in the phase space. They act as forbidden barriers for chaotic orbits to diffuse. Gradual
destruction of these invariant structures with the increase of k, leads to onset of chaos; for
k ≫ 1, dynamics is highly chaotic. On the other hand, when r is non-integer no KAM tori
exist in the phase space. In this case, depends of the parameter r the phase space is either
mixed or fully chaotic even for small k values.

The Jacobian J of GSM is such that

|Trace J| = |2 + kr cos(2πrqj)| . (3)

Since |qj| ≤ 1/2, for r ≤ 1/2 |Trace J| > 2. That is to say Jacobian has real eigenvalues. In
other words, the system is completely chaotic or hyperbolic for r ≤ 1/2. In this regime there
are contracting and expanding real directions or alternatively stable and unstable manifolds
throughout the phase space. Thus GSM is realized as a rare class of dynamical system as it
has parameters for both highly chaotic and hyperbolic chaotic regimes.

B. Quantum system

GSM arises from the equation of motion of free particle in presence of a field V (q) which is
applied as time periodic impulse. The field is defined as: V (q) = k cos(2πrq)/(4π2r);V (q) =
V (q + 1) and the Hamiltonian is

H =
p2

2
+ V (q)

∑

j

δ(j − t) . (4)

By integrating Shrödinger equation over unit time we obtain corresponding quantum prop-
agator as

Û = e−ip̂2/2h̄ e−iV (q̂)/h̄ . (5)
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Then the quantum dynamics can be described as |ψ(t+ 1)〉 = Û |ψ(t)〉, which is a quantum
analogue of the classical map.

On quantizing 2-torus phase space by introducing periodic boundary conditions both in
q and p [7] we have: q̂|n〉 = (n/N)|n〉 ; p̂|m〉 = (m/N)|m〉 where n,m = −N/2,−N/2 +
1 . . .N/2 − 1. Here N = (2πh̄)−1 is the dimensionality of the Hilbert space and the semi-
classical limit is N → ∞. The position and momentum eigenstates obey the periodicity
|n+N〉 = |n〉 ; |m+N〉 = |m〉 and the transformation function is

〈n|m〉 = 1√
N

exp
[

i2πmn

N

]

. (6)

Being a homogeneous linear system, Shrödinger equation in finite N dimensional space has
solutions |φj〉, j = 1, 2, . . . N , which are linearly independent. Since the Hamiltonian is
time periodic (unit period), according to Floquet theory [8] the solutions satisfy eigenvalue

equation Û |φj〉 = e−iφj |φj〉. Eigenstates |φj〉 are quasienergy states and eigenangles φj

are quasienergies. Then general solution at a given time is |ψ〉 =
∑

j cj|φj〉 where cj are
constants. As a consequence of hermiticity of Hamiltonian, quasienergy states are orthogonal
and they form a complete set in finite N dimensional space.

Matrix form of the propagator in discrete position representation is [9]

Unn′ ≡ 〈n|Û |n′〉 = 1√
N

exp

[

−iπ
{

1

4
− (n− n′)2

N
+ 2NV

(

n′

N

)}]

. (7)

The Hamiltonian (4) has reflection symmetry about the origin i.e., H(q, p) = H(−q,−p).
This symmetry is reflected in the quantum propagator matrix

Unn′ =
e−iπ/4

√
N

eiπ(n−n′)2/N exp

{

−ikN
2πr

cos
[

2πr

N
(n′ + α)

]

}

(8)

through the relation [Û , R̂] = 0 where the hermitian operator R̂ is defined as

R̂|n〉 = | − n〉 for α = 0
= | − n− 1〉 for α = 0.5 .

(9)

Note that a phase factor α is introduced in the matrix element to avoid exact quantum
symmetry. Since R̂2 = 1 we may label the eigenstates of Û with eigenvalues ±1 of R̂ i.e.,
the states are |φ±〉. For α = 0.5, symmetry matrix of order N is

RN = 〈n|R̂|n′〉 = δ(n+ n′ + 1) (mod N) (10)

which has ones along secondary diagonal and zeros elsewhere. Then the state components
have a relation 〈−n− 1|φ〉 = ±〈n|φ〉 i.e.,

|φ±〉 =
(

|v〉
±RN/2|v〉

)

. (11)

Eigenstates can be numerically obtained by diagonalizing the matrix Unn′ of order N . If
N is even integer, there are N/2 even parity states {|φ+〉} and N/2 odd parity states {|φ−〉}.
On exploiting R-symmetry, the diagonalization can be reduced to the matrix of order N/2
by standard procedure [10]. The reduced matrix is
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Unn′ =
e−iπ/4

√
N

exp

{

−ikN
2πr

cos
[

2πr

N

(

n+
1

2
− N

2

)]

}

×
{

eiπ(n−n′)2/N ± eiπ(n+n′+1)2/N
}

(12)

where n, n′ = 0, 1, . . . N/2 − 1. Now the separation of parity states is obvious.

III. SPECTRAL STATISTICS

One of the standard statistical measures for a chaotic quantum system is the nearest
neighbour spacing distribution of quantum levels. For a regular system, levels are clustered
such that the spacings follow Poisson distribution. On the other hand, in chaotic case
the levels exhibit repulsion such that spacings exhibit RMT predicted Wigner distribution.
We expect the classical complexity of GSM, arises due to the parameter r, will also have
manifestation in the spectral spacings. It is evident from Fig. 1 that, in contrast to the
predominantly regular case, for r = 0.5 (hyperbolic) the spacings follow Wigner distribution.

FIG. 1: Nearest neighbour spacing distributions of 1000 quasienergies which correspond to even

parity states for k = 0.3 with α = 0.5. Smooth curves are the Poisson and Wigner distribution.
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A. Level velocities

Having seen the effect of r in the spectral spacing, we further investigate on dynamics of
the quasienergies in parameter space i.e., level velocities. To be specific, we study second
moments of level velocities in different classical regimes. We take α = 0.35 so that R-
symmetry is broken in the quantum system, and the factor α is dropped out in following
expressions for the sake of convenience. Quasienergies φj ≡ φj(k, r) have scaled velocities:

xj =

(

2π2r2

N

)

∂φj

∂k

=

(

2π2r2

N

)

[

1

h̄
〈φj|∂V/∂k|φj〉

]

= πr
∑

n

cos(2πrn/N)|〈n|φj〉|2 (13)

and

yj =

(

2πr2

Nk

)

∂φj

∂r

=

(

2πr2

Nk

)

[

1

h̄
〈φj|∂V/∂r|φj〉

]

= −2πr
∑

n

(n/N) sin(2πrn/N)|〈n|φj〉|2 −
∑

n

cos(2πrn/N)|〈n|φj〉|2. (14)

Average velocities in semiclassical limit are

〈x〉 =
1

N

∑

j

xj = sin(πr)

〈y〉 =
1

N

∑

j

yj = cos(πr)− 2 sin(πr)

πr
. (15)

Then the second moment of x is given by

〈x2〉 =
1

N

∑

j

x2j

= (πr)2
{

∑

n

cos2(2πrn/N)
〈

|〈n|φj〉|4
〉

+
∑

n 6=n′

cos(2πrn/N) cos(2πrn′/N)
〈

|〈n|φj〉|2|〈n′|φj〉|2
〉







(16)
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Assuming that spectral averaged eigenfunction components are independent of specific po-
sition eigenvalues n, terms within the angle brackets can be taken out of the sum. Then

〈x2〉 ∼ (πr)2
{

[〈

|〈n|φj〉|4
〉

−
〈

|〈n|φj〉|2|〈n′|φj〉|2
〉]

∑

n

cos2(2πrn/N)

+
〈

|〈n|φj〉|2|〈n′|φj〉|2
〉

[

∑

n

cos(2πrn/N)

]2






. (17)

In chaotic regimes, standard RMT results [11]

〈

|〈n|φj〉|4
〉

= 3[N(N + 2)]−1 ≃ 3N−2

〈

|〈n|φj〉|2|〈n′|φj〉|2
〉

= [N(N + 2)]−1 ≃ N−2
(18)

which correspond to Gaussian orthogonal ensemble are applicable here as well. It should
be noted that application of RMT results essentially adopt the assumption made above.
Replacing the sum by integration in semiclassical limit we arrive to

〈x2〉
RMT

=
(πr)2

N

[

1 +
sin(2πr)

2πr

]

+ 〈x〉2 . (19)

Similarly the second moment of y is

〈y2〉 =
1

N

∑

j

y2j (20)

=
∑

n

{[2πr(n/N) sin(2πrn/N)]2 + cos2(2πrn/N)

+ 4πr(n/N) sin(2πrn/N) cos(2πrn/N)}
〈

|〈n|φj〉|4
〉

+
∑

n 6=n′

{(2πr/N)2nn′ sin(2πrn/N) sin(2πrn′/N) + cos(2πrn/N) cos(2πrn′/N)

+ 4πr(n/N) sin(2πrn/N) cos(2πrn′/N)}
〈

|〈n|φj〉|2|〈n′|φj〉|2
〉

(21)

and the RMT prediction is

〈y2〉
RMT

=
1

N

{

1 +
(πr)2

3
+

sin(2πr)

2πr

[

5

2
− (πr)2

]

− 3

2
cos(2πr)

}

+ 〈y〉2 . (22)

In chaotic regime, quantum states are such that the quantities in left hand side of Eqn.
(18) fluctuate about the respective RMT values. These fluctuations could lead to the failure
of RMT in predicting the second moment. In Ref. [6] a semiclassical analysis on the
systematic deviation between the second moment and its RMT prediction has been made.
Here we are interested to see the validity of the RMT prediction in different classical regimes.
For that we define normalized deviations:
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∆x =

∣

∣

∣

∣

∣

〈x2〉 − 〈x2〉
RMT

〈x2〉

∣

∣

∣

∣

∣

; ∆y =

∣

∣

∣

∣

∣

〈y2〉 − 〈y2〉
RMT

〈y2〉

∣

∣

∣

∣

∣

(23)

and taking average of the two positive quantities as

∆ =
∆x +∆y

2
. (24)

The deviation is calculated for various parameters and plotted in Fig. 2. Let us first
consider the data obtained for small values of k (0.3 and 0.1). As we see the deviation is
nearly zero for r ≤ 1/2. For further values of r, the deviation is found to be significantly
large. This is expected as the underlying classical dynamics is predominantly regular or
mixed and the RMT is not applicable. On the other hand, the data for large k (5 and
25) exhibit different behaviour. Though the classical phase space is highly chaotic for these
parameters, significant deviation observed for various values of r shows the failure of RMT
prediction. However, it is noticable from the four sets of observation that for r ≤ 1/2 the
deviation is nearly zero.

FIG. 2: Deviation between level velocity second moments and RMT predictions. In all the cases

we have taken α = 0.35 and N = 200.

In Fig. 3, the deviation is plotted for two cases by varying k. For r = 1 the deviation
has strong fluctuations with k. The large deviation for k < 5 is due to the predominantly
regular/mixed behaviour of the underlying classical system. We also observe significant
deviation when k is close to integer multiples of 2π. This may be attributed to the presence
of “accelerator modes” [12], which are small regular regions embedded in the sea of chaotic
phase space. On the other hand, for r = 0.5 the deviation remains negligible irrespective of k
values. This shows that RMT predicts second moment of level velocity in hyperbolic chaotic
regime. From the Eqn. (19), we see that 〈x2〉RMT ∼ 1/N or 〈(∂φ/∂k)2〉RMT ∼ N ∼ 1/h̄. We
obtain the same result for the velocity with respect to r as well.
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FIG. 3: Deviation between level velocity second moments and RMT predictions. We have taken

α = 0.35 and N = 200.

B. Sawtooth map

In this section we study another quantum model whose classical counterpart has hyper-
bolic regime. Consider a free particle that is subjected to a time periodic impulsive potential
V (q) = −λq2/2;V (q + 1) = V (q). Kick to kick dynamics of such a particle is described by
the sawtooth map [13]:

pj+1 = pj + λqj
qj+1 = qj + pj+1

(25)

defined on a unit torus. This map is stable for −4 < λ < 0 and unstable (or hyperbolic)
otherwise. Quantized version of this map can be obtained, as usual, upon introducing
periodic boundaries in q and p. Details of quantized sawtooth map are given elsewhere
[14]. Note that here also the earlier symmetry arguments hold. From the corresponding
quasienergies and quasienergy states, we define the scaled level velocity as

zj =
(−1

Nπ

)

dφj

dλ
= −2

〈

φj

∣

∣

∣

∣

∣

dV

dλ

∣

∣

∣

∣

∣

φj

〉

=
∑

n

(n/N)2|〈n|φj〉|2 (26)

with average 〈z〉 = 1/12. Then the second moment is given by

〈z2〉 = 1

N

∑

j

z2j =
∑

n

(n/N)4
〈

|〈n|φj〉|4
〉

+
∑

n 6=n′

(n/N)2(n′/N)
2
〈

|〈n|φj〉|2|〈n′|φj〉|2
〉

. (27)

Repeating the earlier procedures, we find the RMT prediction as
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FIG. 4: Deviation ∆′ for the quantum sawtooth map with α = 0.35 and N = 200.

〈z2〉
RMT

=
1

40N
+ 〈z〉2 . (28)

Defining normalized deviation as

∆′ =

∣

∣

∣

∣

∣

〈z2〉 − 〈z2〉
RMT

〈z2〉

∣

∣

∣

∣

∣

(29)

in Fig. 4 we have plotted the deviation for different λ values. In the stable region−4 < λ < 0,
where the RMT result is not applicable, the deviation is large. Evidently, RMT predicts
level velocity second moment in hyperbolic regime. Eqn. (28) shows that 〈z2〉RMT ∼ 1/N or
〈(dφ/dλ)2〉RMT ∼ N ∼ 1/h̄. Here also we see that second moment is inversely proportional
to the Planck constant for hyperbolic chaos.

IV. CONCLUSION

In this paper we have introduced quantum version of a generalized standard map. The
classical system corresponds to the dynamics of a particle, trapped in an 1D infinite square
well potential, in presence of time-periodic kicks. For different classical regimes, the second
moment of quantum level velocity is computed and compared with the RMT prediction.
We have shown that while the prediction fails in highly chaotic regime, the second moment
is well predicted by the RMT as ∼ 1/h̄ in hyperbolic chaotic regime. By considering
another example viz., quantum sawtooth map, the RMT prediction of second moment in
hyperbolic chaotic regime has been reinforced. We hope the presented result would shed
new lights to explore more on quantum hyperbolic chaos.
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