880 research outputs found

    Validation of fluorescence transition probability calculations

    Get PDF
    A systematic and quantitative validation of the K and L shell X-ray transition probability calculations according to different theoretical methods has been performed against experimental data. This study is relevant to the optimization of data libraries used by software systems, namely Monte Carlo codes, dealing with X-ray fluorescence. The results support the adoption of transition probabilities calculated according to the Hartree-Fock approach, which manifest better agreement with experimental measurements than calculations based on the Hartree-Slater method.Comment: 8 pages, 21 figures and images, 3 tables, to appear in proceedings of the Nuclear Science Symposium and Medical Imaging Conference 2009, Orland

    Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization

    Full text link
    Successful preparation of polymer nanocomposites, exploiting graphene-related materials, via melt mixing technology requires precise design, optimization and control of processing. In the present work, the effect of different processing parameters during the preparation of poly (butylene terephthalate) nanocomposites, through ring-opening polymerization of cyclic butylene terephthalate in presence of graphite nanoplatelets (GNP), was thoroughly addressed. Processing temperature (240{\deg}C or 260{\deg}C), extrusion time (5 or 10 minutes) and shear rate (50 or 100 rpm) were varied by means of a full factorial design of experiment approach, leading to the preparation of polybutylene terephthalate/GNP nanocomposite in 8 different processing conditions. Morphology and quality of GNP were investigated by means of electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry and Raman spectroscopy. Molecular weight of the polymer matrix in nanocomposites and nanoflake dispersion were experimentally determined as a function of the different processing conditions. The effect of transformation parameters on electrical and thermal properties was studied by means of electrical and thermal conductivity measurement. Heat and charge transport performance evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; in particular, gentle processing conditions (low shear rate, short mixing time) turned out to be the most favourable condition to obtain high conductivity values

    Non-linear Matter Spectra in Coupled Quintessence

    Get PDF
    We consider cosmologies in which a dark-energy scalar field interacts with cold dark matter. The growth of perturbations is followed beyond the linear level by means of the time-renormalization-group method, which is extended to describe a multi-component matter sector. Even in the absence of the extra interaction, a scale-dependent bias is generated as a consequence of the different initial conditions for baryons and dark matter after decoupling. The effect is enhanced significantly by the extra coupling and can be at the 2-3 percent level in the range of scales of baryonic acoustic oscillations. We compare our results with N-body simulations, finding very good agreement.Comment: 20 pages, 6 figures, typo correcte

    Refactoring, reengineering and evolution: paths to Geant4 uncertainty quantification and performance improvement

    Full text link
    Ongoing investigations for the improvement of Geant4 accuracy and computational performance resulting by refactoring and reengineering parts of the code are discussed. Issues in refactoring that are specific to the domain of physics simulation are identified and their impact is elucidated. Preliminary quantitative results are reported.Comment: To be published in the Proc. CHEP (Computing in High Energy Physics) 201

    Probing the evolution of the near-IR luminosity function of galaxies to z ~ 3 in the Hubble Deep Field South

    Full text link
    [Abridged] We present the rest-frame Js-band and Ks-band luminosity function of a sample of about 300 galaxies selected in the HDF-S at Ks<23 (Vega). We use calibrated photometric redshift together with spectroscopic redshift for 25% of the sample. The sample has allowed to probe the evolution of the LF in the three redshift bins [0;0.8), [0.8;1.9) and [1.9;4) centered at the median redshift z_m ~ [0.6,1.2,3]. The values of alpha we estimate are consistent with the local value and do not show any trend with redshift. We do not see evidence of evolution from z=0 to z_m ~ 0.6 suggesting that the population of local bright galaxies was already formed at z<0.8. On the contrary, we clearly detect an evolution of the LF to z_m ~ 1.2 characterized by a brightening of M* and by a decline of phi*. To z_m ~ 1.2 M* brightens by about 0.4-0.6 mag and phi* decreases by a factor 2-3. This trend persists, even if at a less extent, down to z_m ~ 3 both in the Js-band and in the Ks-band LF. The decline of the number density of bright galaxies seen at z>0.8 suggests that a significant fraction of them increases their stellar mass at 1<z<2-3 and that they underwent a strong evolution in this redshift range. On the other hand, this implies also that a significant fraction of local bright/massive galaxies was already in place at z>3. Thus, our results suggest that the assembly of high-mass galaxies is spread over a large redshift range and that the increase of their stellar mass has been very efficient also at very high redshift at least for a fraction of them.Comment: 18 pages, 21 figures, Accepted for publication in MNRA

    Quantifying the unknown: issues in simulation validation and their experimental impact

    Full text link
    The assessment of the reliability of Monte Carlo simulations is discussed, with emphasis on uncertainty quantification and the related impact on experimental results. Methods and techniques to account for epistemic uncertainties, i.e. for intrinsic knowledge gaps in physics modeling, are discussed with the support of applications to concrete experimental scenarios. Ongoing projects regarding the investigation of epistemic uncertainties in the Geant4 simulation toolkit are reported.Comment: To be published in the Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo, Como, 3-7 October 201
    • …
    corecore