6 research outputs found

    Adrenal Modulation & Perceived Distress of BC Survivors

    Get PDF
    Background: Distress and adrenal balance of breast cancer survivors (BCS) are key elements of their psychophysical health, and increasing evidence has shown both physical exercise and the natural environment are effective for their modulation. The aim of the study was to evaluate the acute effects of the environment and type of light intensity workouts, on distress, salivary cortisol and dehydroepiandrosterone sulfate (DHEA-S) in BCS.Methods: Twenty-four BCS participated in six different workouts, each with the same duration and intensity. Three of them were conducted in natural environments – walking (Wnature), canoeing with assistance (Cnature) and a mix of myofascial and yoga exercises (MYnature). The others were conducted in an urban environment, namely walking (Wurban), or an indoor environment, namely mobilisation and light upper body exercises (MCgym) and a mix of myofascial and yoga exercises (MYgym). Before and after each workout, the Distress Thermometer was completed and saliva was collected.Results: Workouts practised in natural environments elicited a higher reduction in cortisol and the cortisol to DHEA-S ratio and a greater DHEA-S increase compared with workouts practised in urban and indoor environments. Overall, Cnature and MYnature were the best activities; among those practised in urban and indoor environments, MYgym elicited the best results. Distress was not acutely reduced after Wurban and MCgym. Conclusion: Natural environments seem to provide the best management of distress, cortisol, DHEA-S and their balance when working out at light intensities. The simultaneous presence of forests and rivers seems to be the key element of the observed results

    Memory Training Program Decreases the Circulating Level of Cortisol and Pro-inflammatory Cytokines in Healthy Older Adults

    No full text
    Aging cognitive decline has been associated to impairment of the Hypothalamus Pituitary Adrenals (HPA) axis activity and a higher level of the systemic inflammation. However, little is known about the molecules driving this process at peripheral level. In addition, the cognitive function is to some extent modifiable with Memory Training (MT) programs, even among older adults and beyond. The study aims to evaluate whether MT could contribute to ameliorate cognitive performance and modulate the HPA axis activity as well the low level inflammation in the aging phenotype. Whether the phosphatase WIP-1, a negative regulator for inflammation, is involved in this process was also investigated. We recruited 31 young adults (19–28, years of age) and 62 older adults aged over 60. Thirty-two older adults were submitted to 6-months of MT program (EG), and 28 older adults were no treated and used as Control Group (CG). Global cognitive functioning (MMSE score), verbal and visual memory, and attention were assessed at baseline (T0) and after 6-months (T1). At the same time, plasmatic level of Cortisol (C), IL-1β, IL-18, IL-6, and the expression of WIP-1 mRNA and protein in ex vivo Peripheral Blood Mononuclear Cells were analyzed in young adults at T0, as well in older adults at T0 and T1. Together, the results suggest that MT improves the global cognitive functionality, verbal and visual memory, as well as the level of attention. At the same time we observed a decrease of the plasmatic level of C, of the cytokines, and an increase of the expression of mRNA and protein of WIP-1. The analysis of correlations highlighted that the level of the mRNA of WIP-1 was positively associated to the MMSE score, and negatively to the C and cytokine levels. In conclusion, we purpose the MT as tool that could help support successful aging through the improving of memory, attention and global cognitive function performance. Furthermore, this approach could participate to maintain lower the peripheral levels of the C and pro-inflammatory cytokines. The WIP-1 as a potential new target of the pathophysiology of aging is theorized

    Validation of the GSP<sup>®</sup>/DELFIA<sup>®</sup> Anti-SARS-CoV-2 IgG Kit Using Dried Blood Samples for High-Throughput Serosurveillance and Standardized Quantitative Measurement of Anti-Spike S1 IgG Antibody Responses Post-Vaccination

    No full text
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a major global public health crisis. In response, researchers and pharmaceutical companies worked together for the rapid development of vaccines to reduce the morbidity and mortality associated with viral infection. Monitoring host immunity following virus infection and/or vaccination is essential to guide vaccination intervention policy. Humoral immune response to vaccination can be assessed with serologic testing, and indeed, many serological immunoassays are now in use. However, these many different assays make the standardization of test results difficult. Moreover, most published serological tests require venous blood sampling, which makes testing large numbers of people complex and costly. Here, we validate the GSP®/DELFIA® Anti-SARS-CoV-2 IgG kit using dried blood samples for high-throughput serosurveillance using standard quantitative measurements of anti-spike S1 IgG antibody concentrations. We then apply our validated assay to compare post-vaccination anti-SARS-CoV-2 S1 IgG levels from subjects who received a double dose of the AZD1222 vaccine with those vaccinated with a heterologous strategy, demonstrating how this assay is suitable for large-scale screening to achieve a clearer population immune picture

    Validation of the GSP&reg;/DELFIA&reg; Anti-SARS-CoV-2 IgG Kit Using Dried Blood Samples for High-Throughput Serosurveillance and Standardized Quantitative Measurement of Anti-Spike S1 IgG Antibody Responses Post-Vaccination

    No full text
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a major global public health crisis. In response, researchers and pharmaceutical companies worked together for the rapid development of vaccines to reduce the morbidity and mortality associated with viral infection. Monitoring host immunity following virus infection and/or vaccination is essential to guide vaccination intervention policy. Humoral immune response to vaccination can be assessed with serologic testing, and indeed, many serological immunoassays are now in use. However, these many different assays make the standardization of test results difficult. Moreover, most published serological tests require venous blood sampling, which makes testing large numbers of people complex and costly. Here, we validate the GSP&reg;/DELFIA&reg; Anti-SARS-CoV-2 IgG kit using dried blood samples for high-throughput serosurveillance using standard quantitative measurements of anti-spike S1 IgG antibody concentrations. We then apply our validated assay to compare post-vaccination anti-SARS-CoV-2 S1 IgG levels from subjects who received a double dose of the AZD1222 vaccine with those vaccinated with a heterologous strategy, demonstrating how this assay is suitable for large-scale screening to achieve a clearer population immune picture

    Picture of the Favourable Immune Profile Induced by Anti-SARS-CoV-2 Vaccination

    No full text
    COVID-19 pandemic has hit people’s health, economy, and society worldwide. Great confidence in returning to normality has been placed in the vaccination campaign. The knowledge of individual immune profiles and the time required to achieve immunological protection is crucial to choose the best vaccination strategy. We compared anti-S1 antibody levels produced over time by BNT162b2 and AZD1222 vaccines and evaluated the induction of antigen-specific T-cells. A total of 2569 anti-SARS-CoV-2 IgG determination on dried blood spot samples were carried out, firstly in a cohort of 1181 individuals at random time-points, and subsequently, in an independent cohort of 88 vaccinated subjects, up to the seventeenth week from the first dose administration. Spike-specific T-cells were analysed in seronegative subjects between the two doses. AZD1222 induced lower anti-S1 IgG levels as compared to BNT162b2. Moreover, 40% of AZD1222 vaccinated subjects and 3% of BNT162b2 individuals resulted in seronegative during all the time-points, between the two doses. All these subjects developed antigen-specific T cells, already after the first dose. These results suggest that this test represents an excellent tool for a wide sero-surveillance. Both vaccines induce a favourable immune profile guaranteeing efficacy against severe adverse effects of SARS-CoV-2 infection, already after the first dose administration
    corecore