559 research outputs found

    De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission of Retinitis Pigmentosa.

    Get PDF
    BackgroundRetinitis pigmentosa is a phenotype with diverse genetic causes. Due to this genetic heterogeneity, genome-wide identification and analysis of protein-altering DNA variants by exome sequencing is a powerful tool for novel variant and disease gene discovery. In this study, exome sequencing analysis was used to search for potentially causal DNA variants in a two-generation pedigree with apparent dominant retinitis pigmentosa.MethodsVariant identification and analysis of three affected members (mother and two affected offspring) was performed via exome sequencing. Parental samples of the index case were used to establish inheritance. Follow-up testing of 94 additional retinitis pigmentosa pedigrees was performed via retrospective analysis or Sanger sequencing.Results and conclusionsA total of 136 high quality coding variants in 123 genes were identified which are consistent with autosomal dominant disease. Of these, one of the strongest genetic and functional candidates is a c.269A>G (p.Tyr90Cys) variant in ARL3. Follow-up testing established that this variant occurred de novo in the index case. No additional putative causal variants in ARL3 were identified in the follow-up cohort, suggesting that if ARL3 variants can cause adRP it is an extremely rare phenomenon

    Design of cohort studies in chronic diseases using routinely collected databases when a prescription is used as surrogate outcome

    Get PDF
    BACKGROUND: There has been little research on design of studies based on routinely collected data when the clinical endpoint of interest is not recorded, but can be inferred from a prescription. This often happens when exploring the effect of a drug on chronic diseases. Using the LifeLink claims database in studying the possible anti-inflammatory effects of statins in rheumatoid arthritis (RA), oral steroids (OS) were treated as surrogate of inflammatory flare-ups. We compared two cohort study designs, the first using time to event outcomes and the second using quantitative amount of the surrogate. METHODS: RA patients were extracted from the LifeLink database. In the first study, patients were split into two sub-cohorts based on whether they were using OS within a specified time window of the RA index date (first record of RA). Using Cox models we evaluated the association between time-varying exposure to statins and (i) initiation of OS therapy in the non-users of OS at RA index date and (ii) cessation of OS therapy in the users of OS at RA index date. In the second study, we matched new statin users to non users on age and sex. Zero inflated negative binomial models were used to contrast the number of days' prescriptions of OS in the year following date of statin initiation for the two exposure groups. RESULTS: In the unmatched study, the statin exposure hazard ratio (HR) of initiating OS in the 31451 non-users of OS at RA index date was 0.96(95% CI 0.9,1.1) and the statin exposure HR of cessation of OS therapy in the 6026 users of OS therapy at RA index date was 0.95 (0.87,1.05). In the matched cohort of 6288 RA patients the statin exposure rate ratio for duration on OS therapy was 0.88(0.76,1.02). There was digit preference for outcomes in multiples of 7 and 30 days. CONCLUSIONS: The 'time to event' study design was preferable because it better exploits information on all available patients and provides a degree of robustness toward confounding. We found no convincing evidence that statins reduce inflammation in RA patients

    MAU2 and NIPBL variants impair the heterodimerization of the cohesin loader subunits and cause Cornelia de Lange syndrome

    Get PDF
    The NIPBL/MAU2 heterodimer loads cohesin onto chromatin. Mutations inNIPBLaccount for most cases ofthe rare developmental disorder Cornelia de Lange syndrome (CdLS). Here we report aMAU2 variant causing CdLS, a deletion of seven amino acids that impairs the interaction between MAU2 and the NIPBL N terminus.Investigating this interaction, we discovered that MAU2 and the NIPBL N terminus are largely dispensable fornormal cohesin and NIPBL function in cells with a NIPBL early truncating mutation. Despite a predicted fataloutcome of an out-of-frame single nucleotide duplication inNIPBL, engineered in two different cell lines,alternative translation initiation yields a form of NIPBL missing N-terminal residues. This form cannot interactwith MAU2, but binds DNA and mediates cohesin loading. Altogether, our work reveals that cohesin loading can occur independently of functional NIPBL/MAU2 complexes and highlights a novel mechanism protectiveagainst out-of-frame mutations that is potentially relevant for other genetic conditions
    corecore