5 research outputs found

    Wound Healing Activity of a New Formulation from Platelet Lysate

    Get PDF
    Platelet-rich plasma (PRP) is an attractive preparation in regenerative medicine due to its potential role on the healing process in different experimental models. This study was designed to investigate the wound healing activity of a new formulation of PRP. Different gel-based formulations of PRP were prepared. Open excision wounds were made on the back of male Sprague-Dawley rats, and PRP gel was administered topically once daily until the wounds healed completely (12 days). The results revealed that the tested PRP formulation significantly accelerated the wound healing process by increasing the wound contracting, tissue granulization, vascularization, and collagen regeneration. Interestingly, we found that there were no significant differences between PRP formulation and its gel base in all above mentioned parameters. Although this investigation showed that PRP formulation had significant wound healing effects, but the PRP gel base also had significant wound healing properties. This might indicate the wound healing properties of the PRP gel ingredients in the current investigation.</p

    Comparison of Cuminaldehyde Contents from Cell Suspension Cultures and Seeds of [Bunium persicum (Boiss.) B. Fedtsch.]

    No full text
    The cell suspension culture and seed samples of Bunium persicum were extracted by supercritical fluid, hydrodistillation and solvent methods and analyzed by Gas Chromatography. In this study to compare the different methods of extractions, cuminaldehyde was targeted as one of the Black zira essential oil constitute. For callus induction the germinated seeds were cultured as explants on Murashige and Skoog medium supplemented with 2 mg/l 2,4-dichlorophenoxy acetic acid and 0.5 mg/l kinetin (treatment A) as well as 2 mg/l ?-naphthalene acetic acid and 0.5 mg/l 6-benzyl aminopurine (treatment B) and followed by cells suspension cultures establishment for the first time. The results of cell culture showed that cells from treatment B have a growth rate higher than A. All extracts were dissolved in 1 ml hexane and analyzed by Gas Chromatography. According to the Gas Chromatography analysis, cuminaldehyde was not detected in the supercritical fluid samples, while it was present in hydrodistillation and solvent extract. Cuminaldehyde percentage in cell and seed solvent extracts was 4.65% and 18.61% respectively. Gas Chromatography results also showed that no cuminaldehyde is present in media extracts, means no cuminaldehyde has been secreted into the medium

    Wound Healing Activity of a New Formulation from Platelet Lysate

    No full text
    Platelet-rich plasma (PRP) is an attractive preparation in regenerative medicine due to its potential role in the healing process in different experimental models. This study was designed to investigate the wound healing activity of a new formulation of PRP. Different gel-based formulations of PRP were prepared. Open excision wounds were made on the back of male Sprague-Dawley rats, and PRP gel was administered topically once daily until the wounds healed completely (12 days). The results revealed that the tested PRP formulation significantly accelerated the wound healing process by increasing the wound contraction, tissue granulization, vascularization, and collagen regeneration. Interestingly, this study showed that there were no significant differences between the PRP and its gel-based formulation in all the above mentioned parameters. Although this investigation showed that PRP formulation had significant wound healing effects, the PRP gel-based formulation also had significant wound healing properties. This might indicate the wound healing properties of the PRP gel ingredients in the current investigation

    Innovations in hydrogen storage materials: synthesis, applications, and prospects

    No full text
    Hydrogen, globally recognized as the most efficient and clean energy carrier, holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release, challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods, emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes, including metal hydrides, complex hydrides, carbon materials, metal-organic frameworks (MOFs), and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally, the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated, with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms, particularly subcritical crack growth, and examines the advantages and limitations of different materials for various applications, supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials, highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety, providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.<br/
    corecore