17 research outputs found

    Plan Selection in Proton Therapy of Locally Advanced Prostate Cancer with Simultaneous Treatment of Multiple Targets

    Get PDF
    Purpose Intensity modulated proton therapy (IMPT) of locally advanced prostate cancer can spare the bowel considerably compared with modern photon therapy, but simultaneous treatment of the prostate (p), seminal vesicles (sv), and lymph nodes is challenging owing to day-to-day organ motion and range uncertainties. Our purpose was, therefore, to generate a plan library for use in adaptive IMPT to mitigate these uncertainties. Methods and Materials We retrospectively included 27 patients with a series of computed tomography scans throughout their treatment representing day-to-day variation. In 18 of the patients, target motion was analyzed using rigid shifts of prostate gold markers relative to bony anatomy. A plan library with different p and sv planning target volume (p/sv-PTV) positions was defined from the distribution and direction of these shifts. Delivery of IMPT using plan selection from the library was simulated for image guidance on bony anatomy, in the remaining patients and compared with nonadaptive IMPT. Results The plan library consisted of 3 small margin p/sv-PTVs: (1) p/sv-PTV shifted 1.5 systematic error (Σ) of the population mean in the anterior and cranial directions, (2) p/sv-PTV shifted 1.5Σ in the posterior and caudal directions, and (3) p/sv-PTV in the planning position. The conventional p/sv-PTV was also available for backup. Plan selection compared with nonadaptive IMPT resulted in a reduction of the rectum volume receiving 60 Gy relative biological effect (RBE) (V60GyRBE) from on average 12 mL to 9 mL. For the bladder the average V45GyRBE was reduced from 36% to 30%. Large and small bowel doses were also reduced, whereas target coverage was comparable or improved compared with nonadaptive IMPT. Conclusions Plan selection based on a population model of rigid target motion was feasible for all patients. Compared with conventional IMPT, plan selection resulted in significant dosimetric sparing of rectum and bladder without compromising target coverage.publishedVersio

    Reduction of PTV margins for elective pelvic lymph nodes in online adaptive radiotherapy of prostate cancer patients

    Get PDF
    Background Cone beam CT (CBCT) based online adaptive radiotherapy (oART) is a new development in radiotherapy. With oART, the requirements for planning target volume (PTV) margins differ from standard therapy because motion occurs during a session. In this study, we aim to evaluate a margin reduction for locally advanced prostate patients treated with oART. Material and methods Intrafraction motion of the elective pelvic lymph nodes was evaluated by two radiation therapists (RTTs) for 150 fractions from 10 prostate patients treated with oART. PTV margins of 3, 4 and 5 mm where added to these lymph nodes for all patients. The seven first patients were treated with 5 mm PTV margin, while the last three patients were treated with 4 mm margin. After treatment, the RTTs reviewed the verification CBCTs and evaluated whether the various PTV margins would have covered the adapted clinical target volume, scoring each fraction as approved, inconclusive or rejected. Couch shifts corresponding to the rigid prostate match between the CBCTs were analyzed with respect to the RTT evaluation. Results The RTTs approved a 4 mm margin in 95% of the fractions, while 2% of the fractions were rejected. For a 3 mm margin, 57% of the fractions were approved, while 5% were rejected. The scoring from the two RTTs was consistent; e.g., for 3 mm, one RTT approved 58% of the fractions, while the other approved 55%. If the couch was moved less than 2 mm in any direction, 70% of the fractions were approved for a 3 mm margin, compared to 32% for shifts greater than 2 mm. Conclusion It is safe to reduce the PTV margin from 5 to 4 mm for the elective pelvic lymph nodes for prostate patients treated with oART. Further margin reductions can be motivated for patients presenting little intrafraction motion.publishedVersio

    Inter-patient variations in relative biological efectiveness for craniospinal irradiation with protons

    Get PDF
    Cranio-spinal irradiation (CSI) using protons has dosimetric advantages compared to photons and is expected to reduce risk of adverse effects. The proton relative biological effectiveness (RBE) varies with linear energy transfer (LET), tissue type and dose, but a variable RBE has not replaced the constant RBE of 1.1 in clinical treatment planning. We examined inter-patient variations in RBE for ten proton CSI patients. Variable RBE models were used to obtain RBE and RBE-weighted doses. RBE was quantified in terms of dose weighted organ-mean RBE (RBEd = mean RBE-weighted dose/mean physical dose) and effective RBE of the near maximum dose (D2%), i.e. RBED2% = D2%,RBE/D2%,phys, where subscripts RBE and phys indicate that the D2% is calculated based on an RBE model and the physical dose, respectively. Compared to the median RBEd of the patient population, differences up to 15% were observed for the individual RBEd values found for the thyroid, while more modest variations were seen for the heart (6%), lungs (2%) and brainstem (<1%). Large inter-patient variation in RBE could be correlated to large spread in LET and dose for these organs at risk (OARs). For OARs with small inter-patient variations, the results show that applying a population based RBE in treatment planning may be a step forward compared to using RBE of 1.1. OARs with large inter-patient RBE variations should ideally be selected for patient-specific biological or RBE robustness analysis if the physical doses are close to known dose thresholds.publishedVersio

    Influence of beam pruning techniques on LET and RBE in proton arc therapy

    Get PDF
    Introduction: Proton arc therapy (PAT) is an emerging treatment modality that holds promise to improve target volume coverage and reduce linear energy transfer (LET) in organs at risk. We aimed to investigate if pruning the highest energy layers in each beam direction could increase the LET in the target and reduce LET in tissue and organs at risk (OAR) surrounding the target volume, thus reducing the relative biological effectiveness (RBE)-weighted dose and sparing healthy tissue. Methods: PAT plans for a germinoma, an ependymoma and a rhabdomyosarcoma patient were created in the Eclipse treatment planning system with a prescribed dose of 54 Gy(RBE) using a constant RBE of 1.1 (RBE1.1). The PAT plans was pruned for high energy spots, creating several PAT plans with different amounts of pruning while maintaining tumor coverage, denoted PX-PAT plans, where X represents the amount of pruning. All plans were recalculated in the FLUKA Monte Carlo software, and the LET, physical dose, and variable RBE-weighted dose from the phenomenological Rørvik (ROR) model and an LET weighted dose (LWD) model were evaluated. Results and discussion: For the germinoma case, all plans but the P6-PAT reduced the mean RBE-weighted dose to the surrounding healthy tissue compared to the PAT plan. The LET was increasingly higher within the PTV for each pruning iteration, where the mean LET from the P6-PAT plan was 1.5 keV/μm higher than for the PAT plan, while the P4- and P5-PAT plans provided an increase of 0.4 and 0.7 keV/μm, respectively. The other plans increased the LET by a smaller margin compared to the PAT plan. Likewise, the LET values to the healthy tissue were reduced for each degree of pruning. Similar results were found for the ependymoma and the rhabdomyosarcoma case. We demonstrated a PAT pruning technique that can increase both LET and RBE in the target volume and at the same time decreased values in healthy tissue, without affecting the target volume dose coverage.publishedVersio

    Influence of beam pruning techniques on LET and RBE in proton arc therapy

    Get PDF
    IntroductionProton arc therapy (PAT) is an emerging treatment modality that holds promise to improve target volume coverage and reduce linear energy transfer (LET) in organs at risk. We aimed to investigate if pruning the highest energy layers in each beam direction could increase the LET in the target and reduce LET in tissue and organs at risk (OAR) surrounding the target volume, thus reducing the relative biological effectiveness (RBE)-weighted dose and sparing healthy tissue.MethodsPAT plans for a germinoma, an ependymoma and a rhabdomyosarcoma patient were created in the Eclipse treatment planning system with a prescribed dose of 54 Gy(RBE) using a constant RBE of 1.1 (RBE1.1). The PAT plans was pruned for high energy spots, creating several PAT plans with different amounts of pruning while maintaining tumor coverage, denoted PX-PAT plans, where X represents the amount of pruning. All plans were recalculated in the FLUKA Monte Carlo software, and the LET, physical dose, and variable RBE-weighted dose from the phenomenological Rørvik (ROR) model and an LET weighted dose (LWD) model were evaluated.Results and discussionFor the germinoma case, all plans but the P6-PAT reduced the mean RBE-weighted dose to the surrounding healthy tissue compared to the PAT plan. The LET was increasingly higher within the PTV for each pruning iteration, where the mean LET from the P6-PAT plan was 1.5 keV/μm higher than for the PAT plan, while the P4- and P5-PAT plans provided an increase of 0.4 and 0.7 keV/μm, respectively. The other plans increased the LET by a smaller margin compared to the PAT plan. Likewise, the LET values to the healthy tissue were reduced for each degree of pruning. Similar results were found for the ependymoma and the rhabdomyosarcoma case. We demonstrated a PAT pruning technique that can increase both LET and RBE in the target volume and at the same time decreased values in healthy tissue, without affecting the target volume dose coverage

    The Organ Sparing Potential of Different Biological Optimization Strategies in Proton Therapy

    Get PDF
    Purpose Variable relative biological effectiveness (RBE) models allow for differences in linear energy transfer (LET), physical dose, and tissue type to be accounted for when quantifying and optimizing the biological damage of protons. These models are complex and fraught with uncertainties, and therefore, simpler RBE optimization strategies have also been suggested. Our aim was to compare several biological optimization strategies for proton therapy by evaluating their performance in different clinical cases. Methods and Materials Two different optimization strategies were compared: full variable RBE optimization and differential RBE optimization, which involve applying fixed RBE for the planning target volume (PTV) and variable RBE in organs at risk (OARs). The optimization strategies were coupled to 2 variable RBE models and 1 LET-weighted dose model, with performance demonstrated on 3 different clinical cases: brain, head and neck, and prostate tumors. Results In cases with low in the tumor, the full RBE optimization strategies had a large effect, with up to 10% reduction in RBE-weighted dose to the PTV and OARs compared with the reference plan, whereas smaller variations (<5%) were obtained with differential optimization. For tumors with high the differential RBE optimization strategy showed a greater reduction in RBE-weighted dose to the OARs compared with the reference plan and the full RBE optimization strategy. Conclusions Differences between the optimization strategies varied across the studied cases, influenced by both biological and physical parameters. Whereas full RBE optimization showed greater OAR sparing, awareness of underdosage to the target must be carefully considered.publishedVersio

    Combined RBE and OER optimization in proton therapy with FLUKA based on EF5-PET

    Get PDF
    Introduction Tumor hypoxia is associated with poor treatment outcome. Hypoxic regions are more radioresistant than well-oxygenated regions, as quantified by the oxygen enhancement ratio (OER). In optimization of proton therapy, including OER in addition to the relative biological effectiveness (RBE) could therefore be used to adapt to patient-specific radioresistance governed by intrinsic radiosensitivity and hypoxia. Methods A combined RBE and OER weighted dose (ROWD) calculation method was implemented in a FLUKA Monte Carlo (MC) based treatment planning tool. The method is based on the linear quadratic model, with α and β parameters as a function of the OER, and therefore a function of the linear energy transfer (LET) and partial oxygen pressure (pO2). Proton therapy plans for two head and neck cancer (HNC) patients were optimized with pO2 estimated from [18F]-EF5 positron emission tomography (PET) images. For the ROWD calculations, an RBE of 1.1 (RBE1.1,OER) and two variable RBE models, Rørvik (ROR) and McNamara (MCN), were used, alongside a reference plan without incorporation of OER (RBE1.1). Results For the HNC patients, treatment plans in line with the prescription dose and with acceptable target ROWD could be generated with the established tool. The physical dose was the main factor modulated in the ROWD. The impact of incorporating OER during optimization of HNC patients was demonstrated by the substantial difference found between ROWD and physical dose in the hypoxic tumor region. The largest physical dose differences between the ROWD optimized plans and the reference plan was 12.2 Gy. Conclusion The FLUKA MC based tool was able to optimize proton treatment plans taking the tumor pO2 distribution from hypoxia PET images into account. Independent of RBE-model, both elevated LET and physical dose were found in the hypoxic regions, which shows the potential to increase the tumor control compared to a conventional optimization approach.publishedVersio

    Reducing systematic errors due to deformation of organs at risk in radiotherapy

    Get PDF
    Purpose In radiotherapy (RT), the planning CT (pCT) is commonly used to plan the full RT-course. Due to organ deformation and motion, the organ shapes seen at the pCT will not be identical to their shapes during RT. Any difference between the pCT organ shape and the organ's mean shape during RT will cause systematic errors. We propose to use statistical shrinkage estimation to reduce this error using only the pCT and the population mean shape computed from training data. Methods The method was evaluated for the rectum in a cohort of 37 prostate cancer patients that had a pCT and 7–10 treatment CTs with rectum delineations. Deformable registration was performed both within-patient and between patients, resulting in point-to-point correspondence between all rectum shapes, which enabled us to compute a population mean rectum. Shrinkage estimates were found by combining the pCTs linearly with the population mean. The method was trained and evaluated using leave-one-out cross validation. The shrinkage estimates and the patient mean shapes were compared geometrically using the Dice similarity index (DSI), Hausdorff distance (HD), and bidirectional local distance. Clinical dose/volume histograms, equivalent uniform dose (EUD) and minimum dose to the hottest 5% volume (D5%) were compared for the shrinkage estimate and the pCT. Results The method resulted in moderate but statistically significant increase in similarity to the patient mean shape over the pCT. On average, the HD was reduced from 15.6 to 13.4 mm, while the DSI was increased from 0.74 to 0.78. Significant reduction in the bias of volume estimates was found in the DVH-range of 52.5–65 Gy, where the bias was reduced from −1.3 to −0.2 percentage points, but no significant improvement was found in EUD or D5%, Conclusions The results suggest that shrinkage estimation can reduce systematic errors due to organ deformations in RT. The method has potential to increase the accuracy in RT of deformable organs and can improve motion modeling.publishedVersio

    Reducing systematic errors due to deformation of organs at risk in radiotherapy

    No full text
    Purpose In radiotherapy (RT), the planning CT (pCT) is commonly used to plan the full RT-course. Due to organ deformation and motion, the organ shapes seen at the pCT will not be identical to their shapes during RT. Any difference between the pCT organ shape and the organ's mean shape during RT will cause systematic errors. We propose to use statistical shrinkage estimation to reduce this error using only the pCT and the population mean shape computed from training data. Methods The method was evaluated for the rectum in a cohort of 37 prostate cancer patients that had a pCT and 7–10 treatment CTs with rectum delineations. Deformable registration was performed both within-patient and between patients, resulting in point-to-point correspondence between all rectum shapes, which enabled us to compute a population mean rectum. Shrinkage estimates were found by combining the pCTs linearly with the population mean. The method was trained and evaluated using leave-one-out cross validation. The shrinkage estimates and the patient mean shapes were compared geometrically using the Dice similarity index (DSI), Hausdorff distance (HD), and bidirectional local distance. Clinical dose/volume histograms, equivalent uniform dose (EUD) and minimum dose to the hottest 5% volume (D5%) were compared for the shrinkage estimate and the pCT. Results The method resulted in moderate but statistically significant increase in similarity to the patient mean shape over the pCT. On average, the HD was reduced from 15.6 to 13.4 mm, while the DSI was increased from 0.74 to 0.78. Significant reduction in the bias of volume estimates was found in the DVH-range of 52.5–65 Gy, where the bias was reduced from −1.3 to −0.2 percentage points, but no significant improvement was found in EUD or D5%, Conclusions The results suggest that shrinkage estimation can reduce systematic errors due to organ deformations in RT. The method has potential to increase the accuracy in RT of deformable organs and can improve motion modeling

    Reducing systematic errors due to deformation of organs at risk in radiotherapy

    No full text
    Purpose In radiotherapy (RT), the planning CT (pCT) is commonly used to plan the full RT-course. Due to organ deformation and motion, the organ shapes seen at the pCT will not be identical to their shapes during RT. Any difference between the pCT organ shape and the organ's mean shape during RT will cause systematic errors. We propose to use statistical shrinkage estimation to reduce this error using only the pCT and the population mean shape computed from training data. Methods The method was evaluated for the rectum in a cohort of 37 prostate cancer patients that had a pCT and 7–10 treatment CTs with rectum delineations. Deformable registration was performed both within-patient and between patients, resulting in point-to-point correspondence between all rectum shapes, which enabled us to compute a population mean rectum. Shrinkage estimates were found by combining the pCTs linearly with the population mean. The method was trained and evaluated using leave-one-out cross validation. The shrinkage estimates and the patient mean shapes were compared geometrically using the Dice similarity index (DSI), Hausdorff distance (HD), and bidirectional local distance. Clinical dose/volume histograms, equivalent uniform dose (EUD) and minimum dose to the hottest 5% volume (D5%) were compared for the shrinkage estimate and the pCT. Results The method resulted in moderate but statistically significant increase in similarity to the patient mean shape over the pCT. On average, the HD was reduced from 15.6 to 13.4 mm, while the DSI was increased from 0.74 to 0.78. Significant reduction in the bias of volume estimates was found in the DVH-range of 52.5–65 Gy, where the bias was reduced from −1.3 to −0.2 percentage points, but no significant improvement was found in EUD or D5%, Conclusions The results suggest that shrinkage estimation can reduce systematic errors due to organ deformations in RT. The method has potential to increase the accuracy in RT of deformable organs and can improve motion modeling
    corecore