5 research outputs found

    Tissue resident stem cells: till death do us part

    Get PDF
    Aging is accompanied by reduced regenerative capacity of all tissues and organs and dysfunction of adult stem cells. Notably, these age-related alterations contribute to distinct pathophysiological characteristics depending on the tissue of origin and function and thus require special attention in a type by type manner. In this paper, we review the current understanding of the mechanisms leading to tissue-specific adult stem cell dysfunction and reduced regenerative capacity with age. A comprehensive investigation of the hematopoietic, the neural, the mesenchymal, and the skeletal stem cells in age-related research highlights that distinct mechanisms are associated with the different types of tissue stem cells. The link between age-related stem cell dysfunction and human pathologies is discussed along with the challenges and the future perspectives in stem cell-based therapies in age-related diseases

    Tissue resident stem cells: till death do us part

    Get PDF

    Homeostatic Interactions at the Front of Migration Control the Integrity and the Efficiency of a Migratory Glial Chain

    No full text
    International audienceIn metazoans, cell migration often occurs in a collective manner: the cells move while physically and functionally connected to their neighbors. The coordinated and timely movement of the cells eventually ensures the proper organization of tissues, and deregulation in such a process contributes to the development of severe diseases. Thus, understanding the cellular mechanisms underlying coordinated cell movement is of great interest in basic and medical science. The developing Drosophila wing provides an excellent model to follow the chain migration of glial cells in vivo. Cells at the tip of the glial collective have been shown to control the timely movement of the chain. In the present study, we show that while pioneers trigger chain migration, they cannot move as single cells. We also show that isolating cell clusters at the chain tip restores the formation of smaller migratory communities. Interestingly, the migratory efficiency of these de novo formed communities depends on the number of cells and progressively improves as the size of the cluster increases. Thus, homeostatic events at the migratory front control community integrity, efficiency, and coordination, emphasizing the importance of interactions and cell counting in fine-tuning collective processes

    Interlocked loops trigger lineage specification and stable fates in the Drosophila nervous system

    No full text
    Multipotent precursors are plastic cells that generate different, stable fates at the correct number, place and time, to allow tissue and organ formation. While fate determinants are known to trigger specific transcriptional programs, the molecular pathway driving the progression from multipotent precursors towards stable and specific identities remains poorly understood. Here we demonstrate that, in Drosophila neural precursors, the glial determinant glial cell missing (Gcm) acts as a 'time bomb' and triggers its own degradation once the glial programme is stably activated. This requires a sequence of transcriptional and post-transcriptional loops, whereby a Gcm target first affects the expression and then acetylation of the fate determinant, thus controlling Gcm levels and stability over time. Defective homeostasis between the loops alters the neuron: glia ratio and freezes cells in an intermediate glial/neuronal phenotype. In sum, we identify an efficient strategy triggering cell identity, a process altered in pathological conditions such as cancer

    Interlocked loops trigger lineage specification and stable fates in the Drosophila nervous system

    No full text
    Multipotent precursors are plastic cells that generate different, stable fates at the correct number, place and time, to allow tissue and organ formation. While fate determinants are known to trigger specific transcriptional programs, the molecular pathway driving the progression from multipotent precursors towards stable and specific identities remains poorly understood. Here we demonstrate that, in Drosophila neural precursors, the glial determinant glial cell missing (Gcm) acts as a 'time bomb' and triggers its own degradation once the glial programme is stably activated. This requires a sequence of transcriptional and posttranscriptional loops, whereby a Gcm target first affects the expression and then acetylation of the fate determinant, thus controlling Gcm levels and stability over time. Defective homeostasis between the loops alters the neuron:glia ratio and freezes cells in an intermediate glial/neuronal phenotype. In sum, we identify an efficient strategy triggering cell identity, a process altered in pathological conditions such as cancer
    corecore