23 research outputs found

    Effects of dietary olive leaf extract on intestinal immune-related gene expressions in common carp, Cyprinus carpio

    Get PDF
    This study aimed to investigate the effects of dietary olive leaf extract (OLE) on intestinal immune-related genes expression of tumor necrosis factor alpha (TNFa), interleukin 1 beta (IL1b), lysozyme (LYS), and mucin2 (MUC2). For this purpose, common carp (~15 g) were fed with 0 (control), 0.1 (OLE-0.1), 0.5 (OLE-0.5) and 1 (OLE-1) % OLE diets for eight weeks. The fish were sampled after one and eight weeks to study intestinal TNFa, IL1b, LYS, and MUC2 gene expressions. The results showed that dietary OLE administration significantly up-regulated intestinal TNFa gene expression after one (all OLE-treated groups) and eight (OLE-0.5) weeks. Moreover, OLE-0.1 and OLE-1 groups showed up-regulated intestinal IL1b expression, after one week, all the OLE-treated fish had significantly higher intestinal IL1b expression, after eight weeks. OLE had no significant effects on LYS gene expression after one week, but OLE-0.1 and OLE-0.5 had significantly higher gene expressions after eight weeks. OLE-0.1 and OLE-1 had significantly lower MUC2 gene expression after one week, but all OLE-treated fish had significantly higher MUC2 gene expression after eight weeks. In conclusion, dietary 0.1-0.5% OLE supplementation is suitable to support common carp intestinal health

    Silk-Based Biopolymers Promise Extensive Biomedical Applications in Tissue Engineering, Drug Delivery, and BioMEMS

    Get PDF
    As an FDA-approved biopolymer, silk has been contemplated for a wide range of applications based on its unique merits, such as biocompatibility, biodegradability, and piezoelectricity. As silk, in both crystalline structure and amorphous state, exhibits unique physical, mechanical, and biological properties (promoting cell migration, differentiation, growth, and protein-surface interaction), it is fruitful to understand its potential applications. Sensors, actuators, and drug delivery systems are the best in case. As such, the current effort first introduces silk fibroin (SF) and delineates its characteristics. It then explores the extensive use of this biomaterial in tissue engineering approaches, in addition to its biosensor and electro-active wearable bioelectronic application. To this end, the SF application in cardiovascular, skin, cartilage, and drug delivery systems for cancer therapy and wound healing was studied precisely. Compositing any type of other variables to induce a specific application or improve any SF barriers, namely its hydrophobicity, poor electrical conductivity, or tuning its mechanical properties, especially in tissue engineering applications, has also been discussed wherever it is deemed informative.</p

    Silk-Based Biopolymers Promise Extensive Biomedical Applications in Tissue Engineering, Drug Delivery, and BioMEMS

    Get PDF
    As an FDA-approved biopolymer, silk has been contemplated for a wide range of applications based on its unique merits, such as biocompatibility, biodegradability, and piezoelectricity. As silk, in both crystalline structure and amorphous state, exhibits unique physical, mechanical, and biological properties (promoting cell migration, differentiation, growth, and protein-surface interaction), it is fruitful to understand its potential applications. Sensors, actuators, and drug delivery systems are the best in case. As such, the current effort first introduces silk fibroin (SF) and delineates its characteristics. It then explores the extensive use of this biomaterial in tissue engineering approaches, in addition to its biosensor and electro-active wearable bioelectronic application. To this end, the SF application in cardiovascular, skin, cartilage, and drug delivery systems for cancer therapy and wound healing was studied precisely. Compositing any type of other variables to induce a specific application or improve any SF barriers, namely its hydrophobicity, poor electrical conductivity, or tuning its mechanical properties, especially in tissue engineering applications, has also been discussed wherever it is deemed informative.</p

    Snowmass2021 Cosmic Frontier: Cosmic Microwave Background Measurements White Paper

    Get PDF
    This is a solicited whitepaper for the Snowmass 2021 community planning exercise. The paper focuses on measurements and science with the Cosmic Microwave Background (CMB). The CMB is foundational to our understanding of modern physics and continues to be a powerful tool driving our understanding of cosmology and particle physics. In this paper, we outline the broad and unique impact of CMB science for the High Energy Cosmic Frontier in the upcoming decade. We also describe the progression of ground-based CMB experiments, which shows that the community is prepared to develop the key capabilities and facilities needed to achieve these transformative CMB measurements

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Effectiveness of Spiritual Group Therapy on Quality of Life and Spiritual Well-Being among Patients with Breast Cancer

    No full text
    Cancer is deemed the century’s major health problem, and its increasing growth during the last decades has made experts concerned more than ever. Of all types of cancer, breast cancer is regarded as the second most common disease among women. The aim of this study was to determine the effectiveness of spiritual group therapy on quality of life and spiritual well-being among patients suffering from breast cancer. The present research was carried out between March and June 2011. The sample consisted of 24 participants randomly assigned to 2 groups: an experimental group (n, 12) and a control group (n, 12). All the subjects completed questionnaires on quality of life and spiritual well-being in pretest and posttest. The experimental group received 12 sessions of spiritual group therapy. The results demonstrated improvement in quality of life and spiritual well-being in the experimental group. In conclusion, spiritual group therapy can be used to improve quality of life and spiritual well-being (religious health and existential health) among patients with breast cancer

    Chemical Composition and Antioxidant Activity of Clove Essential Oil and its Effect on Stability of Sesame Oil under Accelerated Condition

    No full text
    : Recently due to adverse effects of synthetic antioxidants, there has been a growing interest in the application of natural essential oil in vegetable oils. The present study investigated the chemical composition and antioxidant activity of clove essential oil (CEO) and its addition to sesame oil. Methods: composition and antioxidant activity of clove essential oil The CEO was prepared and analyzed by GC-MS. Then, total phenolic content (TPC), antioxidant activity and ferric reducing antioxidant power (FRAP) were determined. The CEO at different concentrations (0.02, 0.04, 0.06, and 0.08%) and TBHQ (0.02%) were added to sesame oil and samples were stored at 60 °C for 5 weeks. Peroxide value (PV), p-Anisidine value (p-AV), total oxidation (TOTOX) value and Thiobarbituric acid reactive substances (TBARs) were determined in sesame oil samples every week for 35 days. A total of 5 components including eugenol (96.25%), eugenol acetate (1.88%), trans-Caryophyllene (1.66%), α-humulene (0.16%), and caryophyllene oxide (0.06%) were determined as the main components of CEO. Results: The TPC of CEO was 345.95±7.85 mg GAE/g. Moreover, the antioxidant activity of CEO for DPPH (IC50) and FRAP methods was estimated 0.83 ± 0.11 mg/ml and 112.37±8.81 mM Fe2SO4. It was shown that peroxide, p-AV, TOTOX, and TBARS values of all sesame oil samples increased during 5 weeks of storage at accelerated conditions. TBHQ showed better function in preventing oil oxidation, but CEO had acceptable function especially in 0.08% concentration. Conclusion: The CEO in vegetable oil due to high phenolic content could retard lipid peroxidation. It could be mentioned that CEO could be considered as an alternative of synthetics ones in vegetable oils

    Mesoporous Silica Nanoparticles and Mesoporous Bioactive Glasses for Wound Management: From Skin Regeneration to Cancer Therapy

    No full text
    Exploring new therapies for managing skin wounds is under progress and, in this regard, mesoporous silica nanoparticles (MSNs) and mesoporous bioactive glasses (MBGs) offer great opportunities in treating acute, chronic, and malignant wounds. In general, therapeutic effectiveness of both MSNs and MBGs in different formulations (fine powder, fibers, composites etc.) has been proved over all the four stages of normal wound healing including hemostasis, inflammation, proliferation, and remodeling. The main merits of these porous substances can be summarized as their excellent biocompatibility and the ability of loading and delivering a wide range of both hydrophobic and hydrophilic bioactive molecules and chemicals. In addition, doping with inorganic elements (e.g., Cu, Ga, and Ta) into MSNs and MBGs structure is a feasible and practical approach to prepare customized materials for improved skin regeneration. Nowadays, MSNs and MBGs could be utilized in the concept of targeted therapy of skin malignancies (e.g., melanoma) by grafting of specific ligands. Since potential effects of various parameters including the chemical composition, particle size/morphology, textural properties, and surface chemistry should be comprehensively determined via cellular in vitro and in vivo assays, it seems still too early to draw a conclusion on ultimate efficacy of MSNs and MBGs in skin regeneration. In this regard, there are some concerns over the final fate of MSNs and MBGs in the wound site plus optimal dosages for achieving the best outcomes that deserve careful investigation in the future

    The chemical composition and heavy metal content of sesame oil produced by different methods: A risk assessment study

    No full text
    Abstract The oil was extracted from sesame seed with two extraction methods. Traditional (Ardeh oil) and industrial method (cold pressing method: virgin and refined sesame oil) oil extraction was studied to compare the quality and heavy metal content of extracted oils. The chemical properties (fatty acid composition, peroxide, anisidine, acid values, and TOTOX) and heavy metal contents were investigated. The Hazard Quotient (HQ) and Hazard Index (HI) of heavy metal intakes were calculated. The results demonstrated that the predominant fatty acid in oil samples was oleic, linoleic, palmitic, and stearic acids. It was indicated the peroxide, anisidine, acid values, and TOTOX of oil samples were as the order of Ardeh oil > virgin sesame oil > refined sesame oil. The reduction pattern of Pb > Zn >Cu > Cd >As was reported in sesame seed. Although the oil refining had been greatly reduced the Pb of oil sample, but it had yet been much higher than the permissible levels set by Codex Alimentarius. The HQ and HI of all heavy metals were less than one, but they were higher in Ardeh oil compared to others. It is necessary to monitor the presence of heavy metal contaminants and the quality of imported sesame seeds prior to oil preparation
    corecore