1,865 research outputs found

    Breaking the Area Spectral Efficiency Wall in Cognitive Underlay Networks

    Get PDF
    In this article, we develop a comprehensive analytical framework to characterize the area spectral efficiency of a large scale Poisson cognitive underlay network. The developed framework explicitly accommodates channel, topological and medium access uncertainties. The main objective of this study is to launch a preliminary investigation into the design considerations of underlay cognitive networks. To this end, we highlight two available degrees of freedom, i.e., shaping medium access or transmit power. While from the primary user's perspective tuning either to control the interference is equivalent, the picture is different for the secondary network. We show the existence of an area spectral efficiency wall under both adaptation schemes. We also demonstrate that the adaptation of just one of these degrees of freedom does not lead to the optimal performance. But significant performance gains can be harnessed by jointly tuning both the medium access probability and the transmission power of the secondary networks. We explore several design parameters for both adaptation schemes. Finally, we extend our quest to more complex point-to-point and broadcast networks to demonstrate the superior performance of joint tuning policies

    Information Centric Modeling for Two-tier Cache Enabled Cellular Networks

    Get PDF
    In this article, we introduce a new metric called `information centric coverage probability' to characterize the performance of a two-tier cache enabled cellular network. The proposed metric unifies the dynamics of in-network caching and heterogeneous networking to provide a unified performance measure. Specifically, it quantifies the probability that a mobile user (MU) is covered at a desired rate when a certain content is requested from a global content library. In other words, it quantifies the percentage of time when an MU can be served locally without paying the traffic penalties at backhaul, fronthaul and core networks. Caching dynamics are modeled by considering that the content which is least recently used (LRU) is evicted while the requested content is stored in the cache. The considered two-tier cellular model leverages coordination between the macro base-station (MBS) and the small cell base-stations (SBSs) to maximize the resource efficiency. More specifically, coordination between macro and small cells enables an arbitrary SBS to exploit the caches at other SBSs in the neighborhood. Thus reducing the requirement for huge and expensive memory modules at individual SBSs. The spatial dynamics of cellular network are modeled by borrowing well established tools from stochastic geometry. Propagation uncertainties are explicitly factored in characterization by considering the small scale Rayleigh fading and the large scale power-law path-loss model. It is shown that the information centric coverage probability is a function of (i) the size of caches at the SBSs and the MBS; (ii) the content eviction strategy; (iii) the underlying popularity law for referenced objects; (iv) the size of the global content library; (v) desired downlink transmission rate; (vi) the amount of spectrum allocated to each tier; (vii) pathloss exponent; and (viii) the deployment density of the SBSs and the MBSs. Our analysis reveals that significant performance gains can be harnessed with appropriate dimensioning of both cache sizes and deployment density. Finally, identification of memory limited vs. QoS limited operational regime for two-tier cellular networks is considered

    Changes at Work

    Get PDF
    Assesses the changing nature of work, the meaning of work, dissatisfaction with work, and interest in work reform.https://research.upjohn.org/up_press/1137/thumbnail.jp

    Imfluence of potassium nitrate on the growth of Trichoderma in nutrient solution

    Get PDF

    Efficacy of FADO1 against tomato mosaic virus, Fusarium oxysporum f. sp. lycopersici and Erwinia chrysanthemi in demineralized water

    Get PDF

    Second Thoughts on Work

    Get PDF
    Assesses the changing nature of work, the meaning of work, dissatisfaction with work, and interest in work reform.https://research.upjohn.org/up_press/1137/thumbnail.jp

    Enabling IoT Empowered Smart Lighting Solutions: A Communication Theoretic Perspective

    Get PDF
    The aim of this article is to explore the design space of the IoT empowered smart lighting systems from communication theoretic perspective. It is noted that traditional wired solution such as digital addressable lighting interface (DALI) need to be replaced altogether. The solutions proposing to replace just the end connections by wireless transceivers will not fit in the emerging IoT paradigm. Different architectural blocks of smart lighting systems are briefly described. The key enablers for each of these blocks, their evolution trajectories, existing challenges and possible pathways are briefly summarized. It is noted that the functionality of the building block of IoT based smart lighting system can be translated into an abstract reference architecture. A hirerichical networking architecture is proposed and different networking issues are discussed. Finally, a communication theoretic perspective for wireless interface selection is presented

    Cloud Empowered Cognitive Inter-cell Interference Coordination for Small Cellular Networks

    Get PDF
    In this article, we present a Cloud empowered Cognitive Inter-Cell Interference Coordination (C2-ICIC) scheme for small cellular networks. The scheme leverages a recently proposed cloud radio access network (C-RAN) architecture for enabling intra-tier coordination and relaxes the need for inter-tier coordination by adopting the phantom cell architecture. Employing tools from stochastic geometry, we characterize the downlink success probability for a Mobile User (MU) scheduled under the proposed coordination scheme. It is shown that, compared to un-coordinated scheduling, significant performance gains can be realized in ultra dense small cell deployment scenarios under the proposed C2-ICIC scheme. This is attributed to the robust interference protection provisioned by the scheme. It is demonstrated that the gains are particularly large for the users experiencing a weak received signal strength. Indeed, for these users, the received signal-to-interference ratio (SIR) can only be improved by reducing the experienced aggregate co-channel interference. The closed-form expression derived for the downlink success probability is employed to quantify the link level throughput under the proposed scheme. Finally, we briefly explore the design space of the C2-ICIC scheme in terms of interference protection cap which determines both the downlink throughput of the MU scheduled in the coordination mode and the transmission opportunity for the co-channel small cells

    Sparse Reconstruction of Time-Frequency Representation using the Fractional Fourier Transform

    Get PDF
    This paper describes a novel method to approximate instantaneous frequency of non-stationary signals through an application of fractional Fourier transform (FRFT). FRFT enables us to build a compact and accurate chirp dictionary for each windowed signal, thus the proposed approach offers improved computational efficiency, and good performance when compared with chirp atom method

    Throughput Enhancement of Restricted Access Window for Uniform Grouping Scheme in IEEE 802.11ah

    Get PDF
    IEEE 802.11ah has recently emerged as a promising standard for enabling massive machine-to-machine (M2M) communication. In order to support uplink data transmission from dense machine type clients (such as smart meters, IoT end nodes etc.), 802.11ah relies upon the restricted access window (RAW) based Medium Access Control (MAC) protocol. The underlying motivation behind this protocol is to reduce the contention for spectrum access among a large number of devices. The nodes contend with each other in their assigned RAW slot using Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). In each RAW slot, the throughput depends upon the number of nodes. Current studies have suggested that the duration of each RAW slot should be the same in the entire RAW frame. However in this paper, we argue that the duration of each RAW slot should be chosen according to the size of the group. We present a model where a RAW frame is divided into two sub-frames and the duration of RAW slots in each sub-frame is chosen according to the size of the group. With the help of an analytical framework, we demonstrate that the throughput under our proposed scheme can be significantly enhanced when compared to a conventional implementation
    • …
    corecore