14 research outputs found

    Panton-Valentine leucocidin is the key determinant of Staphylococcus aureus pyomyositis in a bacterial GWAS

    Get PDF
    Pyomyositis is a severe bacterial infection of skeletal muscle, commonly affecting children in tropical regions, predominantly caused by . To understand the contribution of bacterial genomic factors to pyomyositis, we conducted a genome-wide association study of cultured from 101 children with pyomyositis and 417 children with asymptomatic nasal carriage attending the Angkor Hospital for Children, Cambodia. We found a strong relationship between bacterial genetic variation and pyomyositis, with estimated heritability 63.8% (95% CI 49.2-78.4%). The presence of the Panton-Valentine leucocidin (PVL) locus increased the odds of pyomyositis 130-fold (=10). The signal of association mapped both to the PVL-coding sequence and the sequence immediately upstream. Together these regions explained over 99.9% of heritability (95% CI 93.5-100%). Our results establish staphylococcal pyomyositis, like tetanus and diphtheria, as critically dependent on a single toxin and demonstrate the potential for association studies to identify specific bacterial genes promoting severe human disease

    South Asia as a Reservoir for the Global Spread of Ciprofloxacin-Resistant Shigella sonnei: A Cross-Sectional Study.

    Get PDF
    BACKGROUND: Antimicrobial resistance is a major issue in the Shigellae, particularly as a specific multidrug-resistant (MDR) lineage of Shigella sonnei (lineage III) is becoming globally dominant. Ciprofloxacin is a recommended treatment for Shigella infections. However, ciprofloxacin-resistant S. sonnei are being increasingly isolated in Asia and sporadically reported on other continents. We hypothesized that Asia is a primary hub for the recent international spread of ciprofloxacin-resistant S. sonnei. METHODS AND FINDINGS: We performed whole-genome sequencing on a collection of 60 contemporaneous ciprofloxacin-resistant S. sonnei isolated in four countries within Asia (Vietnam, n = 11; Bhutan, n = 12; Thailand, n = 1; Cambodia, n = 1) and two outside of Asia (Australia, n = 19; Ireland, n = 16). We reconstructed the recent evolutionary history of these organisms and combined these data with their geographical location of isolation. Placing these sequences into a global phylogeny, we found that all ciprofloxacin-resistant S. sonnei formed a single clade within a Central Asian expansion of lineage III. Furthermore, our data show that resistance to ciprofloxacin within S. sonnei may be globally attributed to a single clonal emergence event, encompassing sequential gyrA-S83L, parC-S80I, and gyrA-D87G mutations. Geographical data predict that South Asia is the likely primary source of these organisms, which are being regularly exported across Asia and intercontinentally into Australia, the United States and Europe. Our analysis was limited by the number of S. sonnei sequences available from diverse geographical areas and time periods, and we cannot discount the potential existence of other unsampled reservoir populations of antimicrobial-resistant S. sonnei. CONCLUSIONS: This study suggests that a single clone, which is widespread in South Asia, is likely driving the current intercontinental surge of ciprofloxacin-resistant S. sonnei and is capable of establishing endemic transmission in new locations. Despite being limited in geographical scope, our work has major implications for understanding the international transfer of antimicrobial-resistant pathogens, with S. sonnei acting as a tractable model for studying how antimicrobial-resistant Gram-negative bacteria spread globally

    Antimicrobial Resistance in Invasive Bacterial Infections in Hospitalized Children, Cambodia, 2007-2016.

    Get PDF
    To determine trends, mortality rates, and costs of antimicrobial resistance in invasive bacterial infections in hospitalized children, we analyzed data from Angkor Hospital for Children, Siem Reap, Cambodia, for 2007-2016. A total of 39,050 cultures yielded 1,341 target pathogens. Resistance rates were high; 82% each of Escherichia coli and Klebsiella pneumoniae isolates were multidrug resistant. Hospital-acquired isolates were more often resistant than community-acquired isolates; resistance trends over time were heterogeneous. K. pneumoniae isolates from neonates were more likely than those from nonneonates to be resistant to ampicillin-gentamicin and third-generation cephalosporins. In patients with community-acquired gram-negative bacteremia, third-generation cephalosporin resistance was associated with increased mortality rates, increased intensive care unit admissions, and 2.26-fold increased healthcare costs among survivors. High antimicrobial resistance in this setting is a threat to human life and the economy. In similar low-resource settings, our methods could be reproduced as a robust surveillance model for antimicrobial resistance

    Introduction and establishment of fluoroquinolone-resistant Shigella sonnei into Bhutan.

    Get PDF
    Shigella sonnei is a major contributor to the global burden of diarrhoeal disease, generally associated with dysenteric diarrhoea in developed countries but also emerging in developing countries. The reason for the recent success of S. sonnei is unknown, but is likely catalysed by its ability to acquire resistance against multiple antimicrobials. Between 2011 and 2013, S. sonnei exhibiting resistance to fluoroquinolones, the first-line treatment recommended for shigellosis, emerged in Bhutan. Aiming to reconstruct the introduction and establishment of fluoroquinolone-resistant S. sonnei populations in Bhutan, we performed whole-genome sequencing on 71 S. sonnei samples isolated in Bhutan between 2011 and 2013.We found that these strains represented an expansion of a clade within the previously described lineage III, found specifically in Central Asia. Temporal phylogenetic reconstruction demonstrated that all of the sequenced Bhutanese S. sonnei diverged from a single ancestor that was introduced into Bhutan around 2006. Our data additionally predicted that fluoroquinolone resistance, conferred by mutations in gyrA and parC, arose prior to the introduction of the founder strain into Bhutan. Once established in Bhutan, these S. sonnei had access to a broad gene pool, as indicated by the acquisition of extended-spectrum β-lactamase-encoding plasmids and genes encoding type IV pili. The data presented here outline a model for the introduction and maintenance of fluoroquinolone-resistant S. sonnei in a new setting. Given the current circulation of fluoroquinolone-resistant S. sonnei in Asia, we speculate that this pattern of introduction is being recapitulated across the region and beyond

    Characterisation of Invasive <i>Streptococcus pneumoniae</i> Isolated from Cambodian Children between 2007 – 2012

    No full text
    <div><p>Background</p><p>The 13-valent pneumococcal vaccine (PCV13) was introduced in Cambodia in January 2015. There are limited data concerning the common serotypes causing invasive pneumococcal disease (IPD). Knowledge of the circulating pneumococcal serotypes is important to monitor epidemiological changes before and after vaccine implementation.</p><p>Methods</p><p>All episodes of IPD defined by the isolation of <i>Streptococcus pneumoniae</i> from blood, cerebrospinal fluid or other sterile site in Cambodian children admitted to the Angkor Hospital for Children in Siem Reap, Northwestern Cambodia, between 1<sup>st</sup> January 2007 and 1<sup>st</sup> July 2012 were retrospectively studied. <i>Streptococcus pneumoniae</i> isolates that could be retrieved underwent phenotypic typing and whole genome sequencing.</p><p>Results</p><p>There were 90 Cambodian children hospitalized with IPD with a median (IQR) age of 2.3 years (0.9–6.2). The case fatality was 15.6% (95% CI 8–23). Of 50 <i>Streptococcus pneumoniae</i> isolates available for further testing, 46% were penicillin non-susceptible and 8% were ceftriaxone non-susceptible, 78% were cotrimoxazole resistant, 30% were erythromycin resistant and 30% chloramphenicol resistant. There were no significant changes in resistance levels over the five-year period. The most common serotypes were 1 (11/50; 22%), 23F (8/50; 16%), 14 (6/50; 12%), 5 (5/50; 10%) and 19A (3/50; 6%). Coverage by PCV7, PCV10 and PCV13 was 44%, 76% and 92% respectively. We identified novel multilocus sequence types and resistotypes using whole genome sequencing.</p><p>Conclusions</p><p>This study suggests IPD is an important disease in Cambodian children and can have a significant mortality. PCV13 coverage of the serotypes determined in studied strains was high and consistent with another recent study. The phenotypic resistance patterns observed were similar to other regional studies. The use of whole genome sequencing in the present study provides additional typing and resistance information together with the description of novel sequence types and resistotypes.</p></div
    corecore