7 research outputs found

    Effect of Amino Group Charge on the Photooxidation Kinetics of Aromatic Amino Acids

    No full text
    The kinetics of the photooxidation of aromatic amino acids histidine (His), tyrosine (Tyr), and tryptophan (Trp) by 3,3′,4,4′-benzophenonetetracarboxylic acid (TCBP) has been investigated in aqueous solutions using time-resolved laser flash photolysis and time-resolved chemically induced dynamic nuclear polarization. The pH dependence of quenching rate constants is measured within a large pH range. The chemical reactivities of free His, Trp, and Tyr and of their acetylated derivatives, <i>N</i>-AcHis, <i>N</i>-AcTyr, and <i>N</i>-AcTrp, toward TCBP triplets are compared to reveal the influence of amino group charge on the oxidation of aromatic amino acids. The bimolecular rate constants of quenching reactions between the triplet-excited TCBP in the fully deprotonated state and tryptophan, histidine, and tyrosine with a positively charged amino group are <i>k</i><sub>q</sub> = 2.2 × 10<sup>9</sup> M<sup>–1</sup> s<sup>–1</sup> (4.9 < pH < 9.4), <i>k</i><sub>q</sub> = 1.6 × 10<sup>9</sup> M<sup>–1</sup> s<sup>–1</sup> (6.0 < pH < 9.2), and <i>k</i><sub>q</sub> = 1.5 × 10<sup>9</sup> M<sup>–1</sup> s<sup>–1</sup> (4.9 < pH < 9.0), respectively. Tryptophan, histidine, and tyrosine with a neutral amino group quench the TCBP triplets with the corresponding rate constants <i>k</i><sub>q</sub> = 8.0 × 10<sup>8</sup> M<sup>–1</sup> s<sup>–1</sup> (pH > 9.4), <i>k</i><sub>q</sub> = 3.0 × 10<sup>8</sup> M<sup>–1</sup> s<sup>–1</sup> (pH > 9.2), and <i>k</i><sub>q</sub> = (4.0–10.0) × 10<sup>8</sup> M<sup>–1</sup> s<sup>–1</sup> (9.0 < pH < 10.1) that are close to those for the N-acetylated derivatives. Thus, it has been established that the presence of charged amino group changes oxidation rates by a significant factor; i.e., His with a positively charged amino group quenches the TCBP triplets 5 times more effectively than <i>N</i>-AcHis and His with a neutral amino group. The efficiency of quenching reaction between the TCBP triplets and Tyr and Trp with a positively charged amino group is about 3 times as high as that of both Tyr and Trp with a neutral amino group, <i>N</i>-AcTyr and <i>N</i>-AcTrp

    Dihydropyrans by Cycloadditions of Oxadienes

    No full text
    International audience3,4‐Dihydro‐2H‐pyrans are present in the skeletons of several natural products, and these versatile synthetic intermediates are readily transformed into tetrahydropyrans, pyridines, or 1,5‐dicarbonyl units. Among the strategies developed to access 3,4‐dihydro‐2H‐pyrans, the hetero‐Diels‐Alder reaction between an oxadiene and a dienophile is particularly valuable because up to three contiguous stereogenic centers can be created diastereo‐ and/or enantioselectively in a single step. This review addresses the mechanism of the reaction and presents methods for preparing the product dihydropyrans enantio‐ and diastereoselectively. Thermal and Lewis acid promoted cycloadditions are discussed, as is the role of activating groups on the oxadiene
    corecore