252 research outputs found

    Extraction of the beta-factor for single quantum dots coupled to a photonic crystal waveguide

    Get PDF
    We present measurements of the beta-factor, describing the coupling efficiency of light emitted by single InAs/GaAs semiconductor quantum dots into a photonic crystal waveguide mode. The beta-factor is evaluated by means of time-resolved frequency-dependent photoluminescence spectroscopy. The emission wavelength of single quantum dots is temperature tuned across the band edge of a photonic crystal waveguide and the spontaneous emission rate is recorded. Decay rates up to 5.7 ns^(-1), corresponding to a Purcell factor of 5.2, are measured and beta-factors up to 85% are extracted. These results prove the potential of photonic crystal waveguides in the realization of on-chip single-photon sources.Comment: 3 pages, 3 figure

    Spectral broadening and shaping of nanosecond pulses: towards shaping of single photons from quantum emitters

    Full text link
    We experimentally demonstrate spectral broadening and shaping of exponentially-decaying nanosecond pulses via nonlinear mixing with a phase-modulated pump in a periodically-poled lithium niobate (PPLN) waveguide. A strong, 1550~nm pulse is imprinted with a temporal phase and used to upconvert a weak 980 nm pulse to 600 nm while simultaneously broadening the spectrum to that of a Lorentzian pulse up to 10 times shorter. While the current experimental demonstration is for spectral shaping, we also provide a numerical study showing the feasibility of subsequent spectral phase correction to achieve temporal compression and re-shaping of a 1~ns mono-exponentially decaying pulse to a 250 ps Lorentzian, which would constitute a complete spectro-temporal waveform shaping protocol. This method, which uses quantum frequency conversion in PPLN with >100:1 signal-to-noise ratio, is compatible with single photon states of light.Comment: 4 pages, 4 figure

    Bright single photon emission from a quantum dot in a circular Bragg grating microcavity

    Full text link
    Bright single photon emission from single quantum dots in suspended circular Bragg grating microcavities is demonstrated. This geometry has been designed to achieve efficient (> 50 %) single photon extraction into a near-Gaussian shaped far-field pattern, modest (~10x) Purcell enhancement of the radiative rate, and a spectral bandwidth of a few nanometers. Measurements of fabricated devices show progress towards these goals, with collection efficiencies as high as ~10% demonstrated with moderate spectral bandwidth and rate enhancement. Photon correlation measurements are performed under above-bandgap excitation (pump wavelength = 780 nm to 820 nm) and confirm the single photon character of the collected emission. While the measured sources are all antibunched and dominantly composed of single photons, the multi-photon probability varies significantly. Devices exhibiting tradeoffs between collection efficiency, Purcell enhancement, and multi-photon probability are explored and the results are interpreted with the help of finite-difference time-domain simulations. Below-bandgap excitation resonant with higher states of the quantum dot and/or cavity (pump wavelength = 860 nm to 900 nm) shows a near-complete suppression of multi-photon events and may circumvent some of the aforementioned tradeoffs.Comment: 11 pages, 12 figure

    Optical sensing with Anderson-localised light

    Full text link
    We show that fabrication imperfections in silicon nitride photonic crystal waveguides can be used as a resource to efficiently confine light in the Anderson-localised regime and add functionalities to photonic devices. Our results prove that disorder-induced localisation of light can be utilised to realise an alternative class of high-quality optical sensors operating at room temperature. We measure wavelength shifts of optical resonances as large as 15.2 nm, more than 100 times the spectral linewidth of 0.15\,nm, for a refractive index change of about 0.38. By studying the temperature dependence of the optical properties of the system, we report wavelength shifts of up to about 2 nm and increases of more than a factor 2 in the quality factor of the cavity resonances, when going from room to cryogenic temperatures. Such a device can allow simultaneous sensing of both local contaminants and temperature variations, monitored by tens of optical resonances spontaneously appearing along a single photonic crystal waveguide. Our findings demonstrate the potential of Anderson-localised light in photonic crystals for scalable and efficient optical sensors operating in the visible and near-infrared range of wavelengths.Comment: 10 pages, 3 figure

    Metallic nanorings for broadband, enhanced extraction of light from solid-state emitters

    Full text link
    We report on the increased extraction of light emitted by solid-state sources embedded within high refractive index materials. This is achieved by making use of a local lensing effect by sub-micron metallic rings deposited on the sample surface and centered around single emitters. We show enhancements in the intensity of the light emitted by InAs/GaAs single quantum dot lines into free space as high as a factor 20. Such a device is intrinsically broadband and therefore compatible with any kind of solid-state light source. We foresee the fabrication of metallic rings via scalable techniques, like nano-imprint, and their implementation to improve the emission of classical and quantum light from solid-state sources. Furthermore, while increasing the brightness of the devices, the metallic rings can also act as top contacts for the local application of electric fields for carrier injection or wavelength tuning.Comment: 10 pages, 3 figure

    Simple Dynamics for Plurality Consensus

    Get PDF
    We study a \emph{Plurality-Consensus} process in which each of nn anonymous agents of a communication network initially supports an opinion (a color chosen from a finite set [k][k]). Then, in every (synchronous) round, each agent can revise his color according to the opinions currently held by a random sample of his neighbors. It is assumed that the initial color configuration exhibits a sufficiently large \emph{bias} ss towards a fixed plurality color, that is, the number of nodes supporting the plurality color exceeds the number of nodes supporting any other color by ss additional nodes. The goal is having the process to converge to the \emph{stable} configuration in which all nodes support the initial plurality. We consider a basic model in which the network is a clique and the update rule (called here the \emph{3-majority dynamics}) of the process is the following: each agent looks at the colors of three random neighbors and then applies the majority rule (breaking ties uniformly). We prove that the process converges in time O(min{k,(n/logn)1/3}logn)\mathcal{O}( \min\{ k, (n/\log n)^{1/3} \} \, \log n ) with high probability, provided that scmin{2k,(n/logn)1/3}nlogns \geqslant c \sqrt{ \min\{ 2k, (n/\log n)^{1/3} \}\, n \log n}. We then prove that our upper bound above is tight as long as k(n/logn)1/4k \leqslant (n/\log n)^{1/4}. This fact implies an exponential time-gap between the plurality-consensus process and the \emph{median} process studied by Doerr et al. in [ACM SPAA'11]. A natural question is whether looking at more (than three) random neighbors can significantly speed up the process. We provide a negative answer to this question: In particular, we show that samples of polylogarithmic size can speed up the process by a polylogarithmic factor only.Comment: Preprint of journal versio

    Photovoltaic Probe of Cavity Polaritons in a Quantum Cascade Structure

    Get PDF
    The strong coupling between an intersubband excitation in a quantum cascade structure and a photonic mode of a planar microcavity has been detected by angle-resolved photovoltaic measurements. A typical anticrossing behavior, with a vacuum-field Rabi splitting of 16 meV at 78K, has been measured, for an intersubband transition at 163 meV. These results show that the strong coupling regime between photons and intersubband excitations can be engineered in a quantum cascade opto-electronic device. They also demonstrate the possibility to perform angle-resolved mid-infrared photodetection and to develop active devices based on intersubband cavity polaritons.Comment: submitted to Applied Physics Letter
    corecore