Bright single photon emission from single quantum dots in suspended circular
Bragg grating microcavities is demonstrated. This geometry has been designed to
achieve efficient (> 50 %) single photon extraction into a near-Gaussian shaped
far-field pattern, modest (~10x) Purcell enhancement of the radiative rate, and
a spectral bandwidth of a few nanometers. Measurements of fabricated devices
show progress towards these goals, with collection efficiencies as high as ~10%
demonstrated with moderate spectral bandwidth and rate enhancement. Photon
correlation measurements are performed under above-bandgap excitation (pump
wavelength = 780 nm to 820 nm) and confirm the single photon character of the
collected emission. While the measured sources are all antibunched and
dominantly composed of single photons, the multi-photon probability varies
significantly. Devices exhibiting tradeoffs between collection efficiency,
Purcell enhancement, and multi-photon probability are explored and the results
are interpreted with the help of finite-difference time-domain simulations.
Below-bandgap excitation resonant with higher states of the quantum dot and/or
cavity (pump wavelength = 860 nm to 900 nm) shows a near-complete suppression
of multi-photon events and may circumvent some of the aforementioned tradeoffs.Comment: 11 pages, 12 figure