29 research outputs found

    A framework for resource recovery from wastewater treatment plants in megacities of developing countries

    Get PDF
    In developing countries, there is often a lack of a comprehensive data set that supports the development of coherent policies on resource recovery from wastewater treatment. This paper aims to contribute to the elaboration of resource recovery projects by providing accurate and updated data from wastewater treatment plants such as those located in the region of the Macrometropolis of Sao Paulo. The authors discuss possibilities of improvement of resource recovery for this illustrative example. Comprehensive analyses were performed based on data from 143 municipal wastewater treatment plants to understand the situation regarding resource recovery implementation in this region. The results show that just 26% of the plants perform at least one resource recovery practice. The predominant resource recovery practice is internal water reuse, and recovery is concentrated more in large plants than in medium and small ones. The sludge is disposed in landfills except for three plants, which perform sludge recycling for compost. Some plant managers reported interest in recovering energy from biogas, in expanding water reuse and in recovering sludge for fertilizer production or for building materials. Several aspects that have been regarded as relevant to the implementation of resource recovery processes in previous literature are discussed, such as the size of the plant, related legislation as well as treatment technologies and configurations. Finally, the authors propose a generic framework with several steps that can help to achieve resource recovery implementation. Therefore, the results can provide support for planning of resource recovery projects for large cities in developing countries. [Abstract copyright: Copyright © 2020 Elsevier Inc. All rights reserved.

    Pharmacokinetic and pharmacodynamic modelling of intravenous, intramuscular and subcutaneous buprenorphine in conscious cats

    No full text
    Objective To describe simultaneous pharmacokinetics (PK) and thermal antinociception after intravenous (IV), intramuscular (IM) and subcutaneous (SC) buprenorphine in cats. Study design Randomized, prospective, blinded, three period crossover experiment. Animals Six healthy adult cats weighing 4.1±0.5kg. Methods Buprenorphine (0.02mgkg-1) was administered IV, IM or SC. Thermal threshold (TT) testing and blood collection were conducted simultaneously at baseline and at predetermined time points up to 24hours after administration. Buprenorphine plasma concentrations were determined by liquid chromatography tandem mass spectrometry. TT was analyzed using anova (p<0.05). A pharmacokinetic-pharmacodynamic (PK-PD) model of the IV data was described using a model combining biophase equilibration and receptor association-dissociation kinetics. Results TT increased above baseline from 15 to 480minutes and at 30 and 60minutes after IV and IM administration, respectively (p<0.05). Maximum increase in TT (mean±SD) was 9.3±4.9°C at 60minutes (IV), 4.6±2.8°C at 45minutes (IM) and 1.9±1.9°C at 60minutes (SC). TT was significantly higher at 15, 60, 120 and 180minutes, and at 15, 30, 45, 60 and 120minutes after IV administration compared to IM and SC, respectively. IV and IM buprenorphine concentration-time data decreased curvilinearly. SC PK could not be modeled due to erratic absorption and disposition. IV buprenorphine disposition was similar to published data. The PK-PD model showed an onset delay mainly attributable to slow biophase equilibration (t1/2ke0=47.4minutes) and receptor binding (kon=0.011mL ng-1minute-1). Persistence of thermal antinociception was due to slow receptor dissociation (t1/2koff=18.2minutes). Conclusions and clinical relevance IV and IM data followed classical disposition and elimination in most cats. Plasma concentrations after IV administration were associated with antinociceptive effect in a PK-PD model including negative hysteresis. At the doses administered, the IV route should be preferred over the IM and SC routes when buprenorphine is administered to cats. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists
    corecore