12 research outputs found

    Análisis de la respuesta inmune celular frente al virus de la fiebre aftosa utilizando virus recombinantes

    Full text link
    Tesis doctoral inédita de la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 20-10-1997Bibliografía:h. 107-12

    Analysis of FMR1 gene expression in female premutation carriers using robust segmented linear regression models

    No full text
    Fragile X syndrome is caused by the absence or reduction of the fragile X mental retardation protein (FMRP) because FMR1 gene expression is reduced. Alleles with repeat sizes of 55–200 are classified as premutations, and it has been demonstrated that FMR1 expression is elevated in the premutation range. However, the majority of the studies reported were performed in males. We studied FMR1 expression in 100 female fragile X family members from the northern region of Spain using quantitative (fluorescence) real-time polymerase chain reaction. Of these 100 women, 19 had normal alleles, 19 were full mutation carriers, and 62 were premutation carriers. After confirming differences between the three groups of females, and increased levels of the FMR1 transcript among premutation carriers, we found that the relationship between mRNA levels and repeat size is nonlinear. These results were obtained using a novel methodology that, based on the size of the CGG repeats, allows us to find out the most probable threshold from which the relationship between CGG repeat number and mRNA levels changes. Using this approach, a significant positive correlation between CGG repeats and total mRNA levels has been found in the premutation range <100 CGG, but this correlation diminishes from 100 onward. However, when correcting by the X inactivation ratio, mRNA levels increase as the number of CGG repeats increases, and this increase is highly significant over 100 CGG. We suggest that due to skewed X inactivation, mRNA levels tend to normalize in females when the number of CGG repeats increases

    Therapeutic Targeting of Fumaryl Acetoacetate Hydrolase in Hereditary Tyrosinemia Type I

    No full text
    Fumarylacetoacetate hydrolase (FAH) is the fifth enzyme in the tyrosine catabolism pathway. A deficiency in human FAH leads to hereditary tyrosinemia type I (HT1), an autosomal recessive disorder that results in the accumulation of toxic metabolites such as succinylacetone, maleylacetoacetate, and fumarylacetoacetate in the liver and kidney, among other tissues. The disease is severe and, when untreated, it can lead to death. A low tyrosine diet combined with the herbicidal nitisinone constitutes the only available therapy, but this treatment is not devoid of secondary effects and long-term complications. In this study, we targeted FAH for the first-time to discover new chemical modulators that act as pharmacological chaperones, directly associating with this enzyme. After screening several thousand compounds and subsequent chemical redesign, we found a set of reversible inhibitors that associate with FAH close to the active site and stabilize the (active) dimeric species, as demonstrated by NMR spectroscopy. Importantly, the inhibitors are also able to partially restore the normal phenotype in a newly developed cellular model of HT1

    Therapeutic Targeting of Fumaryl Acetoacetate Hydrolase in Hereditary Tyrosinemia Type I

    No full text
    Fumarylacetoacetate hydrolase (FAH) is the fifth enzyme in the tyrosine catabolism pathway. A deficiency in human FAH leads to hereditary tyrosinemia type I (HT1), an autosomal recessive disorder that results in the accumulation of toxic metabolites such as succinylacetone, maleylacetoacetate, and fumarylacetoacetate in the liver and kidney, among other tissues. The disease is severe and, when untreated, it can lead to death. A low tyrosine diet combined with the herbicidal nitisinone constitutes the only available therapy, but this treatment is not devoid of secondary effects and long-term complications. In this study, we targeted FAH for the first-time to discover new chemical modulators that act as pharmacological chaperones, directly associating with this enzyme. After screening several thousand compounds and subsequent chemical redesign, we found a set of reversible inhibitors that associate with FAH close to the active site and stabilize the (active) dimeric species, as demonstrated by NMR spectroscopy. Importantly, the inhibitors are also able to partially restore the normal phenotype in a newly developed cellular model of HT1

    Prediction of long-term outcomes of HIV-infected patients developing non-AIDS events using a multistate approach

    Get PDF
    Outcomes of people living with HIV (PLWH) developing non-AIDS events (NAEs) remain poorly defined. We aimed to classify NAEs according to severity, and to describe clinical outcomes and prognostic factors after NAE occurrence using data from CoRIS, a large Spanish HIV cohort from 2004 to 2013. Prospective multicenter cohort study. Using a multistate approach we estimated 3 transition probabilities: from alive and NAE-free to alive and NAE-experienced ("NAE development"); from alive and NAE-experienced to death ("Death after NAE"); and from alive and NAE-free to death ("Death without NAE"). We analyzed the effect of different covariates, including demographic, immunologic and virologic data, on death or NAE development, based on estimates of hazard ratios (HR). We focused on the transition "Death after NAE". 8,789 PLWH were followed-up until death, cohort censoring or loss to follow-up. 792 first incident NAEs occurred in 9.01% PLWH (incidence rate 28.76; 95% confidence interval [CI], 26.80-30.84, per 1000 patient-years). 112 (14.14%) NAE-experienced PLWH and 240 (2.73%) NAE-free PLWH died. Adjusted HR for the transition "Death after NAE" was 12.1 (95%CI, 4.90-29.89). There was a graded increase in the adjusted HRs for mortality according to NAE severity category: HR (95%CI), 4.02 (2.45-6.57) for intermediate-severity; and 9.85 (5.45-17.81) for serious NAEs compared to low-severity NAEs. Male sex (HR 2.04; 95% CI, 1.11-3.84), ag
    corecore