15,687 research outputs found
Design of supercritical cascades with high solidity
The method of complex characteristics of Garabedian and Korn was successfully used to design shockless cascades with solidities of up to one. A code was developed using this method and a new hodograph transformation of the flow onto an ellipse. This code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration
Improved design of subcritical and supercritical cascades using complex characteristics and boundary layer correction
The method of complex characteristics and hodograph transformation for the design of shockless airfoils was extended to design supercritical cascades with high solidities and large inlet angles. This capability was achieved by introducing a conformal mapping of the hodograph domain onto an ellipse and expanding the solution in terms of Tchebycheff polynomials. A computer code was developd based on this idea. A number of airfoils designed with the code are presented. Various supercritical and subcritical compressor, turbine and propeller sections are shown. The lag-entrainment method for the calculation of a turbulent boundary layer was incorporated to the inviscid design code. The results of this calculation are shown for the airfoils described. The elliptic conformal transformation developed to map the hodograph domain onto an ellipse can be used to generate a conformal grid in the physical domain of a cascade of airfoils with open trailing edges with a single transformation. A grid generated with this transformation is shown for the Korn airfoil
Palindromic 3-stage splitting integrators, a roadmap
The implementation of multi-stage splitting integrators is essentially the
same as the implementation of the familiar Strang/Verlet method. Therefore
multi-stage formulas may be easily incorporated into software that now uses the
Strang/Verlet integrator. We study in detail the two-parameter family of
palindromic, three-stage splitting formulas and identify choices of parameters
that may outperform the Strang/Verlet method. One of these choices leads to a
method of effective order four suitable to integrate in time some partial
differential equations. Other choices may be seen as perturbations of the
Strang method that increase efficiency in molecular dynamics simulations and in
Hybrid Monte Carlo sampling.Comment: 20 pages, 8 figures, 2 table
A stroboscopic averaging algorithm for highly oscillatory delay problems
We propose and analyze a heterogenous multiscale method for the efficient
integration of constant-delay differential equations subject to fast periodic
forcing. The stroboscopic averaging method (SAM) suggested here may provide
approximations with \(\mathcal{O}(H^2+1/\Omega^2)\) errors with a
computational effort that grows like \(H^{-1}\) (the inverse of the
stepsize), uniformly in the forcing frequency Omega
- …