45 research outputs found

    Gas-liquid simulation of an airlift bubble column reactor

    Get PDF
    The simulation of two-phase flow for an experimental airlift reactor (32-l volume) using commercially available software from Fluent Incorporated is presented here (http://www.fluent.co.uk). Data from the simulation is compared with the experimental data obtained by the tracking of a magnetic particle and analysis of the pressure drop to determine the gas hold-up. Comparisons between vertical velocity and gas hold-up were made for a series of experiments where the superficial gas velocity in the riser was adjusted between 0.01 and 0.075 m s-1. © 2003 Elsevier B.V. All rights reserved

    First Principles Calculations of Fe on GaAs (100)

    Full text link
    We have calculated from first principles the electronic structure of 0.5 monolayer upto 5 monolayer thick Fe layers on top of a GaAs (100) surface. We find the Fe magnetic moment to be determined by the Fe-As distance. As segregates to the top of the Fe film, whereas Ga most likely is found within the Fe film. Moreover, we find an asymmetric in-plane contraction of our unit-cell along with an expansion perpendicular to the surface. We predict the number of Fe 3d-holes to increase with increasing Fe thickness on pp-doped GaAs.Comment: 9 pages, 14 figures, submitted to PR

    On the Potts model partition function in an external field

    Full text link
    We study the partition function of Potts model in an external (magnetic) field, and its connections with the zero-field Potts model partition function. Using a deletion-contraction formulation for the partition function Z for this model, we show that it can be expanded in terms of the zero-field partition function. We also show that Z can be written as a sum over the spanning trees, and the spanning forests, of a graph G. Our results extend to Z the well-known spanning tree expansion for the zero-field partition function that arises though its connections with the Tutte polynomial

    The modelling of buoyancy driven flow in bubble columns

    Get PDF
    Using the analogy between lateral convection of heat and the two-phase flow in bubble columns, alternative turbulence modelling methods were analysed. The k-ε turbulence and Reynolds stress models were used to predict the buoyant motion of fluids where a density difference arises due to the introduction of heat or a discrete phase. A large height to width aspect ratio cavity was employed in the transport of heat and it was shown that the Reynolds stress model with the use of velocity profiles including the laminar flow solution resulted in turbulent vortices developing. The turbulence models were then applied to the simulation of gas-liquid flow for a 5:1 height to width aspect ratio bubble column. In the case of a gas superficial velocity of 0.02 m s-1 it was determined that employing the Reynolds stress model yielded the most realistic simulation results. © 2003 Elsevier B.V. All rights reserved
    corecore