9 research outputs found

    (+)-Catharanthine and (-)-18-methoxycoronaridine induce antidepressant-like activity in mice by differently recruiting serotonergic and norepinephrinergic neurotransmission

    Get PDF
    The antidepressant-like activity of (+)-catharanthine and (-)-18-methoxycoronaridine [(-)-18-MC] was studied in male and female mice using forced swim (FST) and tail suspension tests (TST). The underlying molecular mechanism was assessed by electrophysiological, radioligand, and functional experiments. The FST results showed that acute administration (40 mg/kg) of (+)-catharanthine or (-)-18-MC induces similar antidepressant-like activity in male and female mice at 1 h and 24 h, whereas the TST results showed a lower effect for (-)-18-MC at 24 h. Repeated treatment at lower dose (20 mg/kg) augmented the efficacy of both congeners. The FST results showed that (-)-18-MC reduces immobility and increases swimming times without changing climbing behavior, whereas (+)-catharanthine reduces immobility time, increases swimming times more markedly, and increases climbing behavior. To investigate the contribution of the serotonin and norepinephrine transporters in the antidepressant effects of (+)-catharanthine and (-)-18-MC, we conducted in vitro radioligand and functional studies. Results obtained demonstrated that (+)-catharanthine inhibits norepinephrine transporter with higher potency/affinity than that for (-)-18-MC, whereas both congeners inhibit serotonin transporter with similar potency/affinity. Moreover, whereas no congener activated/inhibited/potentiated the function of serotonin receptor 3A or serotonin receptor 3AB, both increased serotonin receptor 3A receptor desensitization. Depletion of serotonin decreased the antidepressant-like activity of both congeners, whereas norepinephrine depletion only decreased (+)-catharanthine’s activity. Our study shows that coronaridine congeners induce antidepressant-like activity in a dose- and time-dependent, and sex-independent, manner. The antidepressant-like property of both compounds involves serotonin transporter inhibition, without directly activating/inhibiting serotonin receptors 3, while (+)-catharanthine also mobilizes norepinephrinergic neurotransmission

    A Molecular Basis for the Inhibition of Transient Receptor Potential Vanilloid Type 1 by Gomisin A

    Get PDF
    Transient receptor potential (TRP) channel has critical actions as conditional sensors in primary afferent neurons. We studied the regulatory action of gomisin A on TRPV1 channel current in this report. Schisandra chinensis contains bioactive compounds such as the gomisin derivatives and their related compounds. Coapplication with gomisin A inhibited the capsaicin-mediated inward peak current. This inhibitory effect of gomisin A on capsaicin-induced inward current showed concentration-dependence and was reversible. The half maximal inhibitory concentration of gomisin A was 62.7±8.4 µM. In addition, this inhibition occurred in a noncompetition regulation mode and voltage insensitive manner. Furthermore, molecular docking studies of gomisin A on TRPV1 showed that it interacted predominantly with residues at cavities in the segments 1 and 2 of each subunit. Four potential binding sites for this ligand in the extracellular region at sensor domain of TRPV1 channel were identified. Point mutagenesis studies were undertaken, and gomisin A potency decreased for both the Y453A and N467A mutants. The double mutation of Y453 and N467 significantly attenuated inhibitory effects by gomisin A. In summary, this study revealed the molecular basis for the interaction between TRPV1 and gomisin A and provides a novel potent interaction ligand

    A Combination of Rosa Multiflora and Zizyphus Jujuba Enhance Sleep Quality in Anesthesia-Induced Mice

    No full text
    Sleep is an essential component of quality of life. The majority of people experience sleep problems that impact their quality of life. Melatonin is currently a representative sleep aid. However, it is classified as a prescription drug in most countries, and consumers cannot purchase it to improve their sleep. This sleep induction experiment in mice aimed to identify a natural combination product (NCP) that can create synergistic sleep-promoting effects. Based on the mechanism of action of sleep, we investigated whether phenomenological indicators of sleep quality change according to the intake of NCP. The sleep onset and sleep time of the mice that consumed the NCP found by this study were improved compared to the existing sleep aids. The mean melatonin level in the blood increased by 197% compared to the control. To our knowledge, this is the first study to demonstrate that Rosa multiflora Thunb. (Yeongsil) can promote sleep similarly to Zizyphus jujuba Miller (Sanjoin). The results indicate a preclinical study of NCPs containing Rosa multiflora Thunb and Zizyphus jujuba Miller developed by us showed significant differences in sleep incubation and duration depending on melatonin concentrations. Our results also suggest that increased melatonin concentrations in the blood are likely to improve sleep quality, especially regarding incubation periods

    DDX3 Upregulates Hydrogen Peroxide-Induced Melanogenesis in Sk-Mel-2 Human Melanoma Cells

    No full text
    DDX3 is a DEAD-box RNA helicase with diverse biological functions through multicellular pathways. The objective of this study was to investigate the role of DDX3 in regulating melanogenesis by the exploring signaling pathways involved. Various concentrations of hydrogen peroxide were used to induce melanogenesis in SK-Mel-2 human melanoma cells. Melanin content assays, tyrosinase activity analysis, and Western blot analysis were performed to determine how DDX3 was involved in melanogenesis. Transient transfection was performed to overexpress or silence DDX3 genes. Immunoprecipitation was performed using an antityrosinase antibody. Based on the results of the cell viability test, melanin content, and activity of tyrosinase, a key melanogenesis enzyme, in SK-Mel-2 human melanoma cells, hydrogen peroxide at 0.1 mM was chosen to induce melanogenesis. Treatment with H2O2 notably increased the promoter activity of DDX3. After treatment with hydroperoxide for 4 h, melanin content and tyrosinase activity peaked in DDX3-transfected cells. Overexpression of DDX3 increased melanin content and tyrosinase expression under oxidative stress induced by H2O2. DDX3 co-immunoprecipitated with tyrosinase, a melanogenesis enzyme. The interaction between DDX3 and tyrosinase was strongly increased under oxidative stress. DDX3 could increase melanogenesis under the H2O2-treated condition. Thus, targeting DDX3 could be a novel strategy to develop molecular therapy for skin diseases

    Differential Regulation of Human Serotonin Receptor Type 3A by Chanoclavine and Ergonovine

    No full text
    Irritable bowel syndrome (IBS) is a chronic disease that causes abdominal pain and an imbalance of defecation patterns due to gastrointestinal dysfunction. The cause of IBS remains unclear, but intestinal-brain axis problems and neurotransmitters have been suggested as factors. In this study, chanoclavine, which has a ring structure similar to 5-hydroxytryptamine (5-HT), showed an interaction with the 5-HT3A receptor to regulate IBS. Although its derivatives are known to be involved in neurotransmitter receptors, the molecular physiological mechanism of the interaction between chanoclavine and the 5-HT3A receptor is unknown. Electrophysiological experiments were conducted using a two-electrode voltage-clamp analysis to observe the inhibitory effects of chanoclavine on Xenopus oocytes in which the h5-HT3A receptor was expressed. The co-application of chanoclavine and 5-HT resulted in concentration-dependent, reversible, voltage-independent, and competitive inhibition. The 5-HT3A response induced by 5-HT was blocked by chanoclavine with half-maximal inhibitory response concentration (IC50) values of 107.2 µM. Docking studies suggested that chanoclavine was positioned close F130 and N138 in the 5-HT3A receptor-binding site. The double mutation of F130A and N138A significantly attenuated the interaction of chanoclavine compared to a single mutation or the wild type. These data suggest that F130 and N138 are important sites for ligand binding and activity. Chanoclavine and ergonovine have different effects. Asparagine, the 130th amino acid sequence of the 5-HT3A receptor, and phenylalanine, the 138th, are important in the role of binding chanoclavine, but ergonovine has no interaction with any amino acid sequence of the 5-HT3A receptor. The results of the electrophysiological studies and of in silico simulation showed that chanoclavine has the potential to inhibit the hypergastric stimulation of the gut by inhibiting the stimulation of signal transduction through 5-HT3A receptor stimulation. These findings suggest chanoclavine as a potential antiemetic agent for excessive gut stimulation and offer insight into the mechanisms of 5-HT3A receptor inhibition

    Hydroxy Pentacyclic Triterpene Acid, Kaempferol, Inhibits the Human 5-Hydroxytryptamine Type 3A Receptor Activity

    No full text
    Monoamine serotonin is a major neurotransmitter that acts on a wide range of central nervous system and peripheral nervous system functions and is known to have a role in various processes. Recently, it has been found that 5-HT is involved in cognitive and memory functions through interaction with cholinergic pathways. The natural flavonoid kaempferol (KAE) extracted from Cudrania tricuspidata is a secondary metabolite of the plant. Recently studies have confirmed that KAE possesses a neuroprotective effect because of its strong antioxidant activity. It has been confirmed that KAE is involved in the serotonergic pathway through an in vivo test. However, these results need to be confirmed at the molecular level, because the exact mechanism that is involved in such effects of KAE has not yet been elucidated. Therefore, the objective of this study is to confirm the interaction of KAE with 5-HT3A through electrophysiological studies at the molecular level using KAE extracted from Cudrania tricuspidata. This study confirmed the interaction between 5-HT3A and KAE at the molecular level. KAE inhibited 5-HT3A receptors in a concentration-dependent and voltage-independent manner. Site-directed mutagenesis and molecular-docking studies confirmed that the binding sites D177 and F199 are the major binding sites of human 5-HT3A receptors of KAE

    Antioxidative and Analgesic Effects of Naringin through Selective Inhibition of Transient Receptor Potential Vanilloid Member 1

    No full text
    Transient receptor potential vanilloid member 1 (TRPV1) is activated in response to capsaicin, protons, temperature, and free reactive oxygen species (ROS) released from inflammatory molecules after exposure to harmful stimuli. The expression level of TRPV1 is elevated in the dorsal root ganglion, and its activation through capsaicin and ROS mediates neuropathic pain in mice. Its expression is high in peripheral and central nervous systems. Although pain is a response evolved for survival, many studies have been conducted to develop analgesics, but no clear results have been reported. Here, we found that naringin selectively inhibited capsaicin-stimulated inward currents in Xenopus oocytes using a two-electrode voltage clamp. The results of this study showed that naringin has an IC50 value of 33.3 μM on TRPV1. The amino acid residues D471 and N628 of TRPV1 were involved in its binding to naringin. Our study bridged the gap between the pain suppression effect of TRPV1 and the preventive effect of naringin on neuropathic pain and oxidation. Naringin had the same characteristics as a model selective antagonist, which is claimed to be ideal for the development of analgesics targeting TRPV1. Thus, this study suggests the applicability of naringin as a novel analgesic candidate through antioxidative and analgesic effects of naringin
    corecore