14 research outputs found

    Submental Intubation Including Extubation: Airway Complications of Maxillomandibular Fixation

    Get PDF
    Hernandez first described the submental route for endotracheal intubation in 1986 as an alternative airway maneuver for maxillofacial procedures. Since that time, several case studies have been performed demonstrating the efficacy of the submental approach. This method was recently implemented in the case of a patient with altered nasal anatomy who sustained a mandibular fracture necessitating maxillomandibular fixation. Unlike most of the cases described in the literature, this patient’s operative course was confounded by the need to extubate through the submental tunnel. The patient tolerated the procedure well and was able to avoid other forms of surgical airway

    Case Report Submental Intubation Including Extubation: Airway Complications of Maxillomandibular Fixation

    No full text
    Hernandez first described the submental route for endotracheal intubation in 1986 as an alternative airway maneuver for maxillofacial procedures. Since that time, several case studies have been performed demonstrating the efficacy of the submental approach. This method was recently implemented in the case of a patient with altered nasal anatomy who sustained a mandibular fracture necessitating maxillomandibular fixation. Unlike most of the cases described in the literature, this patient's operative course was confounded by the need to extubate through the submental tunnel. The patient tolerated the procedure well and was able to avoid other forms of surgical airway

    Chain length effects in the second virial coefficient of linear polymer molecules

    No full text
    A generalized perturbation theory is presented for the second virial coefficient of linear and branched polymer systems. Results have been computed for linear chains having two to five hundred statistical segments. These are found to differ significantly from the long-chain asymptotic results of Zimm. A semi-empirical modification of the Flory--Orofino theory is also suggested

    Effect of chain length and molecular architecture on the second virial coefficient of branched polymer molecules

    No full text
    The effects of chain length and molecular architecture on the second virial coefficient of branched polymer chains has been studied using a perturbation analysis. It is found that the deviation from the infinite chain length asymptote increases as the degree of branching increases for chains having less than about 100 statistical segments. A semi-empirical equation is proposed for higher values of the interaction parameter, z

    A randomised controlled study of the post-operative analgesic efficacy of ultrasound-guided pectoral nerve block in the first 24 h after modified radical mastectomy

    No full text
    Background and Aims: Breast cancer has become the most common cancer in women worldwide. Acute post-operative pain following mastectomy remains a challenge for the anaesthesiologist despite a range of treatment options available. The present study aimed to compare the post-operative analgesic efficacy of pectoral nerve (Pecs) block performed under ultrasound with our standard practice of opioids and non-steroidal anti-inflammatory drugs for mastectomy. Methods: This randomised controlled study was conducted at a tertiary care teaching hospital in India, after obtaining ethical clearance. Fifty adult female patients posted for elective unilateral modified radical mastectomy were divided into two groups as follows: Group I (general anaesthesia only) and Group II (general anaesthesia plus ultrasound-guided Pecs block), each comprising 25 patients. Post-randomisation, patients in Group I received general anaesthesia, while Group II patients received ultrasound-guided Pecs block followed by general anaesthesia after 20 min. The primary outcome was measured as patient-reported pain intensity using Visual Analogue Scale (VAS) at rest. Statistical analysis was performed using Student's t-test and Mann–Whitney U-test. Data were entered into MS Excel spreadsheet and analysis was performed using the Statistical Package for the Social Sciences version 23.0. Results: VAS score was significantly lower in Group II at rest and on abduction post-operatively at all time intervals (P < 0.001). The 24-h tramadol consumption was significantly less in Group II compared to Group I (114.4 ± 4.63 mg vs. 402.88 ± 74.22, P < 0.0001). Conclusion: Pecs block provided excellent post-operative analgesia in the first 24 h

    Compartmentalization Role of A-Kinase Anchoring Proteins (AKAPs) in Mediating Protein Kinase A (PKA) Signaling and Cardiomyocyte Hypertrophy

    No full text
    The Beta-adrenergic receptors (β-ARs) stimulation enhances contractility through protein kinase-A (PKA) substrate phosphorylation. This PKA signaling is conferred in part by PKA binding to A-kinase anchoring proteins (AKAPs). AKAPs coordinate multi-protein signaling networks that are targeted to specific intracellular locations, resulting in the localization of enzyme activity and transmitting intracellular actions of neurotransmitters and hormones to its target substrates. In particular, mAKAP (muscle-selective AKAP) has been shown to be present on the nuclear envelope of cardiomyocytes with various proteins including: PKA-regulatory subunit (RIIα), phosphodiesterase-4D3, protein phosphatase-2A, and ryanodine receptor (RyR2). Therefore, through the coordination of spatial-temporal signaling of proteins and enzymes, mAKAP controls cyclic-adenosine monophosphate (cAMP) levels very tightly and functions as a regulator of PKA-mediated substrate phosphorylation leading to changes in calcium availability and myofilament calcium sensitivity. The goal of this review is to elucidate the critical compartmentalization role of mAKAP in mediating PKA signaling and regulating cardiomyocyte hypertrophy by acting as a scaffolding protein. Based on our literature search and studying the structure–function relationship between AKAP scaffolding protein and its binding partners, we propose possible explanations for the mechanism by which mAKAP promotes cardiac hypertrophy
    corecore