16 research outputs found
Alu fossil relics - distribution and insertion polymorphism
Screening of a human genomic library with an oligonucleotide probe specific for one of the young subfamilies of Alu repeats (Ya5/8) resulted in the identification of several hundred positive clones. Thirty-three of these clones were analyzed in detail by DNA sequencing. Oligonucleotide primers complementary to the unique sequence regions flanking each Alu repeat were used in PCR-based assays to perform phylogenetic analyses, chromosomal localization, and insertion polymorphism analyses within different human population groups. All 33 Alu repeats were present only in humans and absent from orthologous positions in several nonhuman primate genomes. Seven Alu repeats were polymorphic for their presence/absence in three different human population groups, making them novel identical-by-descent markers for the analysis of human genetic diversity and evolution. Nucleotide sequence analysis of the polymorphic Alu repeats showed an extremely low nucleotide diversity compared with the subfamily consensus sequence with an average age of 1.63 million years old. The young Alu insertions do not appear to accumulate preferentially on any individual human chromosome
Identification and characterization of two polymorphic Ya5 Alu repeats
Two new polymorphic Alu elements (HS2.25 and HS4.14) belonging to the young (Ya5/8) subfamily of human-specific Alu repeats have been identified. DNA sequence analysis of both Alu repeats revealed that each Alu repeat had a long 3\u27-oligo-dA-rich tail (41 and 52 nucleotides in length) and a low level of random mutations. HS2.25 and HS4.14 were flanked by short precise direct repeats of 8 and 14 nucleotides in length, respectively. HS2.25 was located on human chromosome 13, and HS4.14 on chromosome 1. Both Alu elements were absent from the orthologous positions within the genomes of non-human primates, and were highly polymorphic in a survey of twelve geographically diverse human groups
Detection of t(11;14) using interphase molecular cytogenetics in mantle cell lymphoma and atypical chronic lymphocytic leukemia
The chromosomal translocation t(11;14)(q13;q32) fuses the IGH and CCND1 genes and leads to cyclin D1 overexpression. This genetic abnormality is the hallmark of mantle cell lymphoma (MCL), but is also found in some cases of atypical chronic lymphocytic leukemia (CLL), characterized by a poor outcome. For an unequivocal assessment of this specific chromosomal rearrangement on interphase cells, we developed a set of probes for fluorescence in situ hybridization (FISH). Northern blotting was performed for analysis of the cyclin D1 expression in 18 patients. Thirty-eight patients, with either a typical MCL leukemic phase (17 patients) or atypical CLL with an MCL-type immunophenotype, i.e., CD19+, CD5+, CD23(-/low), CD79b/sIgM(D)++, and FMC7+ (21 patients), were analyzed by dual-color interphase FISH. We selected an IGH-specific BAC probe (covering the JH and first constant regions) and a commercially available CCND1 probe. An IGH-CCND1 fusion was detected in 28 of the 38 patients (17 typical MCL and 11 cases with CLL). Cyclin D1 was not overexpressed in two patients with typical MCL and an IGH- CCND1 fusion. In view of the poor prognosis associated with MCL and t(11;14)- positive CLL, we conclude that this set of probes is a valuable and reliable tool for a rapid diagnosis of these entities
Alu Insertion Polymorphisms and Human Evolution: Evidence for a Larger Population Size in Africa
Alu insertion polymorphisms (polymorphisms consisting of the presence/absence of an Alu element at a particular chromosomal location) offer several advantages over other nuclear DNA polymorphisms for human evolution studies. First, they are typed by rapid, simple, PCR-based assays; second, they are stable polymorphisms—newly inserted Alu elements rarely undergo deletion; third, the presence of an Alu element represents identity by descent—the probability that different Alu elements would independently insert into the exact same chromosomal location is negligible; and fourth, the ancestral state is known with certainty to be the absence of an Alu element. We report here a study of 8 loci in 1500 individuals from 34 worldwide populations. African populations exhibit the most between-population differentiation, and the population tree is rooted in Africa; moreover, the estimated effective time of separation of African versus non-African populations is 137,000 ± 15,000 years ago, in accordance with other genetic data. However, a principal coordinates analysis indicates that populations from Sahul (Australia and New Guinea) are nearly as close to the hypothetical ancestor as are African populations, suggesting that there was an early expansion of tropical populations of our species. An analysis of heterozygosity versus genetic distance suggests that African populations have had a larger effective population size than non-African populations. Overall, these results support the African origin of modern humans in that an earlier expansion of the ancestors of African populations is indicated
