47,000 research outputs found

    Quantum Chaos and Thermalization in Isolated Systems of Interacting Particles

    Full text link
    This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.Comment: 69 pages, 31 figure

    A superfluid He3 detector for direct dark matter search

    Full text link
    MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for direct Dark Matter Search. The idea is to use superfluid He3 as a sensitive medium. The existing device, the superfluid He3 cell, will be briefly introduced. Then a description of the MACHe3 project will be presented, in particular the background rejection and the neutralino event rate that may be achieved with such a device.Comment: 6 pages, 3 figures, Proceedings of the 3rd International Workshop on the Identification of Dark Matter (York, UK, 09/18/2000-09/22/2000

    Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction

    Get PDF
    We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.Comment: 8 pages, 5 figures, RevTeX4; Accepted for publication in Phys. Rev.

    Extracting constraints from direct detection searches of supersymmetric dark matter in the light of null results from the LHC in the squark sector

    Full text link
    The comparison of the results of direct detection of Dark Matter, obtained with various target nuclei, requires model-dependent, or even arbitrary, assumptions. Indeed, to draw conclusions either the spin-dependent (SD) or the spin-independent (SI) interaction has to be neglected. In the light of the null results from supersymmetry searches at the LHC, the squark sector is pushed to high masses. We show that for a squark sector at the TeV scale, the framework used to extract contraints from direct detection searches can be redefined as the number of free parameters is reduced. Moreover, the correlation observed between SI and SD proton cross sections constitutes a key issue for the development of the next generation of Dark Matter detectors.Comment: Figure 3 has been updated. Conclusions unchange

    A project of a new detector for direct Dark Matter search: MACHe3

    Full text link
    MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for direct Dark Matter (DM) search. A cell of superfluid He3 has been developed and the idea of using a large number of such cells in a high granularity detector is proposed.This contribution presents, after a brief description of the superfluid He3 cell, the simulation of the response of different matrix configurations allowing to define an optimum design as a function of the number of cells and the volume of each cell. The exclusion plot and the predicted interaction cross-section for the neutralino as a photino are presented.Comment: 8 pages, 7 figures, Proceedings of Dark Matter 2000 (Marina Del Rey, Los Angeles, USA, 02/23/2000-02/25/2000
    • …
    corecore