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We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein con-
densate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic
gas and the trap, an optical cavity. We show how the interaction between the light and the atoms,
under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of
the population imbalance between the two wells and its variance. We show that the setting is well
suited for the implementation of quantum-limited estimation strategies for the inference of the key
parameters defining the evolution of the atomic system and based on measurements performed on
the cavity field. This would enable de facto Hamiltonian diagnosis via a highly controllable quantum
probe.

The knowledge of the parameters entering the Hamil-
tonian of a given system is fundamental for a variety of
tasks, from the formulation of accurate predictions on
the behavior of the system to quantum state prepara-
tion and manipulation aimed at the achievement of an
information processing goal. It is thus crucial to have
the best possible characterisation of the key parameters
entering the Hamiltonian of the system we would be in-
terested, possibly in a weakly disturbing way for the
dynamics that we aim at implementing. This is even
more relevant for systems of difficult direct address-
ability or endowed with many mutually interacting de-
grees of freedom. This situation is very well embodied
by intra-cavity atomic systems, whose potential for nu-
merous applications of quantum information processing
and quantum simulation has been affirmed by a series
of ground-breaking experiments performed in recent
years [1, 2]. In general, the determination of the features
of a given model in these contexts requires measure-
ments that are strongly disruptive for the fragile state of
the system. A way around this problem is provided by
the implementation of quantum non-demolition mea-
surements [3], which can be technically demanding.

In this respect, the approach based on the use of quan-
tum probes of quantum evolutions, where a fully con-
trollable probing device is coupled to the system of in-
terest and subsequently measured to extract the relevant
information, is very promising as it allows for the imple-
mentation of weakly disruptive strategies by means of
indirect interrogation [4]. Moreover, such an approach is
prone to the application of sophisticated techniques for
parameter estimation that aim at determining the best
preparation and measurement of the probe and are ex-
plicitly designed to achieve the best possible accuracy of
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estimation allowed by classical and quantum mechan-
ics [5].

In this paper, we move along these interesting lines
and propose the use of quantum estimation techniques
(QET) to determine the crucial parameters entering a
system consisting of a cold atomic ensemble loaded into
a double-well potential. Our probing system is embod-
ied by the field of an optical cavity that is locally cou-
pled to only one well of the potential, along the lines
of earlier proposals [6, 7]. We show that strategies for
both the sequential and simultaneous estimation of both
the tunnelling rate and the on-site repulsion energy can
be successfully applied to gather key information on the
evolution that the atomic system would undergo. More-
over, using matter-to-light mapping techniques, we find
the conditions that allow for the non-disruptive deter-
mination of the population imbalance between the wells
by means of measurements performed only on the cav-
ity field.

The remainder of this paper is organised as follows.
In Sec. I we introduce the system that we aim at study-
ing and perform a basic analysis of its dynamical fea-
tures. In Sec. II we describe a simple matter-to-light
map that allows us to infer the population unbalance
between the two wells under conditions of weak cavity-
atom coupling. Sec. III is devoted to the description of
the quantum estimation theory method that we imple-
ment in order to infer the parameters of the Hamiltonian
model regulating the dynamics of the atom-loaded dou-
ble well. Finally, in Sec. IV we draw our conclusions and
highlight a few open directions of investigation.

I. THE MODEL

As shown in Fig. 1, our system consists of a Bose-
Einstein condensate of two-level atoms trapped in a
double-well potential. As introduced above, one of the
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FIG. 1: (Color online) Schematic representation of the system.
A double-well potential loaded with ultra cold atoms is cou-
pled to an optical cavity that accommodated only one of the
wells. The cavity is pumped by a classical field and the sig-
nal leaking out of the resonator is measured to infer the key
features of the double-well system.

wells is accommodated within a single-mode optical
cavity pumped by an external laser field. The frequency
of the field ωC is assumed to be much different than the
atomic transition frequency, so that the excited state of
the atoms can be adiabatically eliminated from the dy-
namical picture. In such a dispersive-interaction regime,
the condensate acts as a quantum dielectric medium for
the cavity field, modifying its refractive index.

The total system Hamiltonian is thus Ĥ = ĤA+ ĤC +

ĤI , where ĤC = ωC â
†â is the energy of the cavity field

[we use units such that ~ = 1 throughout this paper],
ĤA is the energy of the atomic system, and ĤI is the
matter-light interaction term. Using the so-called two-
mode approximation (TMA) introduced in Ref. [7], the
atomic energy can be written as

ĤA = E0(ĉ†1ĉ1 + ĉ†2ĉ2) +κ(ĉ†21 ĉ
2
1 + ĉ†22 ĉ

2
2) +R(ĉ†1ĉ2 + ĉ†2ĉ1).

(1)
Here ĉ1,2 are the bosonic operators that annihilate an
atom in its ground state in each of the two wells used
to describe the state of the atomic system in the dou-
ble well within the TMA, E0 is the energy of the single
atom in one of the wells, κ represents the strength of
the interaction among the atoms (about 4 × 10−34 J for
a gas of 87Rb), and R is a tunnelling rate proportional
to the probability that an atom goes from a well to the
other and dependent on the height of the barrier. All
these terms are responsible for the free evolution of the
system, which we are interested in monitoring. As dis-
cussed in Ref. [8], based on the ratio between R and κ,
several regimes can be distinguished in the evolution of
the atoms. For example, when R � κ, the atoms un-
dergo a regime known as self-trapping, in which the
tunnelling is almost completely suppressed and the dif-
ference in population between the wells stays almost
constant in time.

As for the cavity-atom interaction terms, in the regime
relevant to our work this takes the form [9]

ĤI = βĉ†1ĉ1â
†â, (2)

where β = 1
∆a

∫
G(~r)|u1(~r)|2d3r, with ∆a representing

the detuning between the frequency of the atomic transi-
tion and that of the cavity, u1(~r) the eigenfunction of the
single-particle Hamiltonian of the first well, and G(~r)
is a factor proportional to the intensity of the field in-
side the cavity. We note that the interaction term is in-
versely proportional to the detuning ∆a. This value can
be tuned by modifying the frequency of the cavity, vary-
ing its geometrical size or by working on the atomic
spectrum, making a convenient use of the Zeeman or
Stark effect. The interaction can thus be tuned over quite
a large range of values. Let us consider how the state of
the cavity, which evolves under the effect of the Hamil-
tonian ĤC + ĤI , is affected by the atomic dynamics.

By taking in consideration the leaky nature of any re-
alistic cavity, the overall dynamics of the system density
matrix ρ is well described by a master equation reading,
in a frame rotating at the cavity-field frequency ωC , as

d

dt
ρ =− iβ[â†ân̂1, ρ]− i[ĤA, ρ]− γL(ρ) (3)

with L(ρ) = (1 + Nc)D[â, ρ] + NcD[â†, ρ] and D[Ô, ρ] =

([Ô†Ô, ρ̂]+/2− Ôρ̂Ô†) for any operator Ô. Here, γ is the
decay rate of the cavity, n̂1 = ĉ†1ĉ1, and [·, ·]+ the anti-
commutator. At optical frequencies, the number of ther-
mal environmental photons Nc is very small. We can
thus take Nc ' 0 and solve Eq. (3) numerically with the
quantum jump method [10].

An informative indicator of the resulting dynamics
comes from the study of the temporal behavior of the
Wigner function of the cavity field

W (x, p) =
1

π2

∫
Tr[ρC(t)eyâ

†−y∗â]e2i(yrp−yix)d2y (4)

with ρC(t) = TrA[ρ(t)] the reduced state of the cavity
field after tracing out the condensate’s degrees of free-
dom, (x, p) the phase-space variables, and y = yr + iyi.
The results of our simulations are shown in Fig. 2, where
we have considered the cavity field as initially prepared
in a coherent state |α〉 (α ∈ R for simplicity) and the
condensate in the Fock state |n1, n2〉. We see thatW (x, p)
evolves into a ring with a radius of about |α|. From dif-
ferent calculations, we found that this effect is also visi-
ble if the gas is in the self-trapping regime. However, in
this case, the ring shape is reached in much longer times.
We can give a qualitative interpretation of this behavior.
The quantity βn̂1 is added to ωc, acting like an effective
frequency for the cavity. This frequency, however, is not
a number but an operator acting on the Hilbert space
of the gas, which has a discrete spectrum that is upper-
bounded by the total number of atoms N . Each of these
eigenvalues has a certain probability |〈n1|ρ̂|n1〉|2 to oc-
cur, which depends on the state of the atoms at that time.
Each eigenvalue is effectively a frequency of the cav-
ity, and so it has the effect of making the initial Wigner
function rotate with angular speed βn1 + ωc. Hence we
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FIG. 2: (Color online) Evolution of the Wigner function of a
high-Q cavity, interacting with a BEC in a double-well, out of
the self-trapping regime. The parameters value are β = κ =
R ' 8× 10−37γ and N = 30. The initial state is coherent with
amplitude α = 1.5.

can say that the Wigner function for t > 0 is the super-
position of many Gaussians, which rotate at different
speeds. At very large times the cavity decays and the
Wigner function is not distinguishable from the one of
the vacuum state. In a frame rotating at speed ωc, the
interaction with the atoms is the only term responsible
for the evolution, apart from the external noise. In the
high-Q limit, then, the cavity field is indeed very sensi-
tive to the interaction with the atoms, even at small β.

On the other hand, the interaction term obviously also
affects the dynamics of the atoms. However, it is natural
to think that all the effects of the interaction on the atoms
are less relevant if β is sufficiently small compared to
κ and R. As our purpose is to measure observables of
the condensate in a weakly invasive way, we want to
operate in regimes in which β � R, k. We will use this
assumption in the next Section.

II. MATTER-TO-LIGHT MAPPING TO INFER THE
POPULATION IMBALANCE

In this regime, measurements of the transmitted or
scattered light can then be used to implement a quan-
tum non-demolition measurement of the state of the
condensate [11]. In this spirit, here we will illustrate a
scheme in which the dispersive coupling of an atomic
condensate trapped in a double well potential is used to
perform a weak measurement of the number of atoms

— and of their fluctuations — trapped in the potential.
In order to establish the formal link between the

cavity-field operators to the atomic ones, we consider
the cavity as pumped by an external coherent field at
frequency ωp, so that an extra term of the form ĤP =
η(â†e−iωpt + h.c.) (with η the cavity-pump interaction
strength) is added to the Hamiltonian model Ĥ . Mov-
ing to a frame rotating at the frequency of the pump, the
dynamics of the cavity field is effectively captured by
considering the Langevin equation

∂tâ = −i(∆C + βn̂1)â+
√
γâin(t)− γ

2
â(t) + η1̂1, (5)

where ∆C = ωC −ωp is the detuning between the pump
and the cavity, γ is the single-photon damping rate of
the cavity, âin(t) is the annihilation operator describing
input noise to the cavity. We assume γ to be so large
that the cavity field reaches a steady-state in a time that
is much shorter than the evolution of the atomic system
and the typical timescale β−1 of the cavity-atom interac-
tion. If so, the system will be in its steady state after a
time of the order of γ−1. By setting ∂tâ = 0 in Eq. (5)
and solving with respect to â, we get

â =
η1̂1 +

√
γâin(t)

iβn̂1 + γ/2
. (6)

We also assume that the pump is resonant with the cav-
ity, ∆C = 0 (this assumption is not essential, but it
greatly simplifies the results). We already assumed β
to be small and γ to be large. We now also request
βN � γ and we expand the ratio up to the second order
in 2βn̂1/γ to get

â =
2η + 2

√
γâin(t)

γ

(
1̂1− 2iβn̂1

γ
− 4β2n̂2

1

γ2

)
. (7)

The cavity quadrature operators are then

P̂ = −4
√

2ηβ

γ2
n̂1+

2√
γ

[
P̂in(t)

(
11− 4β2n̂2

1

γ2

)
− X̂in

2βn̂1

γ

]
,

(8)
and

X̂ =
2
√

2η

γ

(
1− 4β2

γ2
n̂1

)

+
2√
γ

[
X̂in(t)

(
11− 4β2n̂2

1

γ2

)
+ P̂in

2βn̂1

γ

]
.

(9)

These quantities can be measured by homodyne mea-
surements of the output field. If we assume white noise
entering the cavity (i.e. a zero-mean, Delta-correlated
field), from the last relations we obtain

〈P̂ 〉 = −2
√

2η

γ

(
2β〈n̂1〉
γ

)
, 〈X̂〉 =

2
√

2η

γ

(
1− 4β2〈n̂2

1〉
γ2

)
.

(10)
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FIG. 3: (Color online) Time-dependence of 〈n̂1〉 [panel (a) and (c)] and 〈n̂2
1〉 [panel (b) and (d)]. The solid red line represents their

numerical evolution, while the blue dashed lines show the results of numerical estimations obtained using Eqs. (11) and (12), and
the parameters N = 30, η = κ ' 4 × 10−34J, γ/κ = 500, β/κ = 1/16, which are valid for a system of 87Rb atoms. In panels (a)
and (b) we have used a value of the tunnelling rate comparable to the self-interaction energy (R/κ = 1), while panels (c) and (d)
are for a tunnelling dominated situation (R/κ = 30).

In order to get these results we have considered no cor-
relations between the input field and the atoms. By
inverting Eq. (10), we get a relation for the number of
atoms in the first well

〈n̂1〉 = − γ2

4
√

2βη
〈P̂ 〉. (11)

Using the second of Eqs. (10) we obtain

〈n̂2
1〉 =

γ3

8
√

2β2η

(
2
√

2η

γ
− 〈X̂〉

)
. (12)

The last two equations give a way to determine the aver-
age number of atoms and its variance, through measure-
ments of the mean value of the quadrature operators of
the output field. In order to make these two equations
describe the dynamics of the condensate, we require

γ � (βN, κN,R) (13)

Furthermore, we want that such measurement does not
perturb the atoms strongly. If we add the assumption

β〈â†â(0)〉 � κN,R, (14)

we expect the free dynamics of the atoms to be predom-
inant. To verify the validity of such results, we solve
Eq. (3) numerically to track the system’s dynamics and
build a suitable benchmark. Figs. 3 shows the results
of such simulations. We see that, after a transient, the
field follows closely the evolution of the atoms, whose
dynamics is not significantly different from the free one,
which certifies the weakly disturbing nature of the prob-
ing mechanism at hand. Quite evidently, the validity
of such adiabatic following holds true regardless of the
conditions of the atomic evolution. In fact, while panel
(a) and (b) address the case of a tunnelling rate com-
parable with the atomic self-interaction energy, panels
(c) and (d) displays the results valid for a tunnelling-
dominated regime (R = 30κ). A feature that is com-
mon to all of the simulations that we have produced
is the small time-delay between the actual dynamics of
(〈n̂1〉, 〈n̂2

1〉) and their estimations achieved through the
light-matter mapping. This is not a numerical artefact
but actually describes the fact that the cavity needs to
reach a dynamical steady state in order to adapt to the
dynamics of the atoms. In fact, the time delay of the red
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curves with respect to the blue ones in Fig. 3 is of the
order of γ−1.

Finally, we discuss the generality of the method just
described. We want this procedure to be valid for any
initial state. To estimate the discrepancy between the
measured value 〈n̂1〉c and the real one, we can use the
parameter

ξm =
1

t1 − t0

∫ t1

t0

|〈n̂1〉c − 〈n̂1〉|dt (15)

while, for the variance

ξq =
1

t1 − t0

∫ t1

t0

|〈n̂2
1〉 − 〈n̂2

1〉c|dt (16)

where t0 and t1 are both times after the transient. In
Figs. 4 and 5 we show histograms displaying the dis-
tribution of the values achieved by ξm,q when 100 ran-
dom initial states of the atomic system are prepared.
Such atomic states are built as |ri〉 =

∑N
n=0 c

i
n |n,N − n〉

with {cin} a set of random complex numbers (such that∑N
n=0 |cin|2 = 1) sampled uniformly for i = 1, .., 100.

We have considered both R = κ (cf. Fig. 4) and in the
tunnelling-dominated regime (cf. Fig. 5). These values
lie in a very narrow range with respect to the nominal
values taken by (〈n̂1〉, 〈n̂2

1〉) (cf. Fig. 3), thus showing the
weak dependence of our results on the initial state of the
system. We can thus claim the general validity of our ap-
proach, regardless of the dynamical conditions and the
preparation of the system to probe.

III. QET APPROACH: DETERMINING THE
PARAMETERS OF THE HAMILTONIAN

The approach described in the previous Section relies
on the one-to-one mapping of the information encoded
in the atomic degrees of freedom into those of the prob-
ing cavity field. However, our strategy is not flexible
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evolution, while the blue dashed lines show the results of numerical estimations obtained using Eq. (11). In both panels we have
used the parameters N = 30, ⌘ =  ' 4⇥ 10�34Hz, R =  ' 4⇥ 10�34Hz, � = 500 ' 2⇥ 10�31Hz,� = /16 ' 2.5⇥ 10�35Hz,
which are valid for a system of 87Rb atoms.

H(µ) = max{⇧̂j} F (µ), which can be cast into the form
can write

H(µ) = Tr[⇢(µ)L̂2(µ)]. (20)

The quantum Fisher information is thus independent of
the specific measurement strategy and leads to the ex-
tension of the Cramér-Rao bound to the quantum do-
main

Var(µ) � 1

MH(µ)
, (21)

which embodies the ultimate limit to the precision of
the estimate of µ. Optimal quantum measurements cor-
respond to POVMs whose F (µ) equals the quantum
Fisher information.

Eq. (19) is a Lyapunov matrix equation whose general
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FIG. 4: (Color online) (a) Parameter ⇠m for different initial
states of the BEC, generated in a random way. (b) Parameter
⇠v for different initial states of the BEC, generated in a random
way.

solution reads

L̂(µ) = 2

Z 1

0

dt e�⇢(µ)t@µ⇢(µ)e⇢(µ)t

= 2
X

n,m

h m|@µ⇢(µ)| ni
⇢n(µ) + ⇢m(µ)

| mi h n| ,
(22)

where we have used the spectral decomposition ⇢(µ) =P
n ⇢n(µ) | ni h n| of the density matrix of the sys-

tem. The quantum Fisher information is correspond-
ingly rewritten as [14]

H(µ) =
X

p

[@µ⇢p(µ)]2

⇢p(µ)
+ 2

X

m 6=n

�mn|h m|@µ ni|2

with �nm = 2


⇢n(µ) � ⇢m(µ)

⇢n(µ) + ⇢m(µ)

�2
.

(23)

The first term in H(µ) is the classical Fisher information
of the distribution {⇢n(µ)}, while the second embodies
the genuinely quantum part, which will be the focus of
our attention from this point on.

In order to calculate it, we expand each eigenstate | ni
over the orthonormal basis of Fock states {|ki} as

| ni =
X

k

 nk |ki , (24)

so that Eq. (23) becomes H(µ) = HC(µ) + HQ(µ) with
HC(µ) =

P
p

[@µ⇢p(µ)]2

⇢p(µ) and
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HC(µ) =

P
p

[@µ⇢p(µ)]2

⇢p(µ) and

5

(a) (b)

0.5 1.0 1.5 2.0

14.2

14.3

14.4

14.5

14.6

14.7

14.8

FIG. 3: (Color online) Time-dependence of hn1i [panel (a)] and hn̂2
1i [panel (b)]. The solid red line represents their numerical

evolution, while the blue dashed lines show the results of numerical estimations obtained using Eq. (11). In both panels we have
used the parameters N = 30, ⌘ =  ' 4⇥ 10�34Hz, R =  ' 4⇥ 10�34Hz, � = 500 ' 2⇥ 10�31Hz,� = /16 ' 2.5⇥ 10�35Hz,
which are valid for a system of 87Rb atoms.

H(µ) = max{⇧̂j} F (µ), which can be cast into the form
can write

H(µ) = Tr[⇢(µ)L̂2(µ)]. (20)

The quantum Fisher information is thus independent of
the specific measurement strategy and leads to the ex-
tension of the Cramér-Rao bound to the quantum do-
main

Var(µ) � 1

MH(µ)
, (21)

which embodies the ultimate limit to the precision of
the estimate of µ. Optimal quantum measurements cor-
respond to POVMs whose F (µ) equals the quantum
Fisher information.

Eq. (19) is a Lyapunov matrix equation whose general
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states of the BEC, generated in a random way. (b) Parameter
⇠v for different initial states of the BEC, generated in a random
way.

solution reads

L̂(µ) = 2

Z 1

0

dt e�⇢(µ)t@µ⇢(µ)e⇢(µ)t

= 2
X

n,m

h m|@µ⇢(µ)| ni
⇢n(µ) + ⇢m(µ)

| mi h n| ,
(22)

where we have used the spectral decomposition ⇢(µ) =P
n ⇢n(µ) | ni h n| of the density matrix of the sys-

tem. The quantum Fisher information is correspond-
ingly rewritten as [14]

H(µ) =
X

p

[@µ⇢p(µ)]2

⇢p(µ)
+ 2

X

m 6=n

�mn|h m|@µ ni|2

with �nm = 2


⇢n(µ) � ⇢m(µ)

⇢n(µ) + ⇢m(µ)

�2
.

(23)

The first term in H(µ) is the classical Fisher information
of the distribution {⇢n(µ)}, while the second embodies
the genuinely quantum part, which will be the focus of
our attention from this point on.

In order to calculate it, we expand each eigenstate | ni
over the orthonormal basis of Fock states {|ki} as

| ni =
X

k

 nk |ki , (24)

so that Eq. (23) becomes H(µ) = HC(µ) + HQ(µ) with
HC(µ) =

P
p

[@µ⇢p(µ)]2

⇢p(µ) and

FIG. 4: (Color online) Distribution of values taken by the pa-
rameter ξm [panel (a)] and ξv [panel (b)] obtained for 100
randomly-generated initial states of the BEC. Here we have
taken the parameters used in panels (a) and (b) of Fig. 3. We
have taken t0 = 0.07/κ and t1 = 0.8/κ.

enough to allow us to estimate other important param-
eter of the atomic Hamiltonian. In particular, the dy-
namics of the population imbalance between the wells
is strongly dependent on the actual value of the param-
eters entering the Hamiltonian. It is thus interesting to
determine precisely such values for a given situation.
In what follows, we aim at providing an analysis of the
precision with which the parameters of the Hamiltonian
could be determined experimentally. Our study relies
on the application of tools from (local) QET [12] to the
system of a driven cavity interacting with one of the
wells of the atomic Josephson junction.

In any estimation procedure the information about
the quantity of interest is inferred from some suitable
measurement performed on the system. Once the mea-
surement has been chosen, an estimator is needed, i.e. a
function from the data sample to the quantity of inter-
est. Without specifying explicitly the parameter that we
aim at estimating, we now go through a brief overview
of the quantum parameter estimation theory to define
the context and tools of our analysis.

The variance Var(µ) of any unbiased estimator is
lower-bounded, as stated by the Cramér-Rao inequality

Var(µ) ≥ 1

MF (µ)
(17)

with M the number of measurements employed in the
estimation and F (µ) the Fisher information relative to
the parameter µ. For measurements having a discrete
set of outcomes, the Fisher information is defined as

F (µ) =
∑

j

pj(∂µ ln pj)
2 =

∑

j

|∂µpj |2
pj

, (18)

where pj represents the probability to get outcome j
from a measurement performed over the probe state
%(µ). On the other hand, for a continuous distribu-
tion of measurement outcomes, the above definition
is changed by replacing the sum with an integral and
pj → p(x|µ) with p(x|µ) the conditional distribution
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evolution, while the blue dashed lines show the results of numerical estimations obtained using Eq. (11). In both panels we have
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H(µ) = max{⇧̂j} F (µ), which can be cast into the form
can write

H(µ) = Tr[⇢(µ)L̂2(µ)]. (20)

The quantum Fisher information is thus independent of
the specific measurement strategy and leads to the ex-
tension of the Cramér-Rao bound to the quantum do-
main

Var(µ) � 1

MH(µ)
, (21)

which embodies the ultimate limit to the precision of
the estimate of µ. Optimal quantum measurements cor-
respond to POVMs whose F (µ) equals the quantum
Fisher information.

Eq. (19) is a Lyapunov matrix equation whose general
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solution reads

L̂(µ) = 2

Z 1

0

dt e�⇢(µ)t@µ⇢(µ)e⇢(µ)t

= 2
X

n,m

h m|@µ⇢(µ)| ni
⇢n(µ) + ⇢m(µ)

| mi h n| ,
(22)

where we have used the spectral decomposition ⇢(µ) =P
n ⇢n(µ) | ni h n| of the density matrix of the sys-

tem. The quantum Fisher information is correspond-
ingly rewritten as [14]

H(µ) =
X

p

[@µ⇢p(µ)]2

⇢p(µ)
+ 2

X

m 6=n

�mn|h m|@µ ni|2

with �nm = 2


⇢n(µ) � ⇢m(µ)

⇢n(µ) + ⇢m(µ)

�2
.

(23)

The first term in H(µ) is the classical Fisher information
of the distribution {⇢n(µ)}, while the second embodies
the genuinely quantum part, which will be the focus of
our attention from this point on.

In order to calculate it, we expand each eigenstate | ni
over the orthonormal basis of Fock states {|ki} as

| ni =
X

k

 nk |ki , (24)

so that Eq. (23) becomes H(µ) = HC(µ) + HQ(µ) with
HC(µ) =

P
p
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H(µ) = max{⇧̂j} F (µ), which can be cast into the form
can write

H(µ) = Tr[⇢(µ)L̂2(µ)]. (20)

The quantum Fisher information is thus independent of
the specific measurement strategy and leads to the ex-
tension of the Cramér-Rao bound to the quantum do-
main

Var(µ) � 1

MH(µ)
, (21)

which embodies the ultimate limit to the precision of
the estimate of µ. Optimal quantum measurements cor-
respond to POVMs whose F (µ) equals the quantum
Fisher information.

Eq. (19) is a Lyapunov matrix equation whose general
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solution reads

L̂(µ) = 2

Z 1

0

dt e�⇢(µ)t@µ⇢(µ)e⇢(µ)t

= 2
X

n,m

h m|@µ⇢(µ)| ni
⇢n(µ) + ⇢m(µ)

| mi h n| ,
(22)

where we have used the spectral decomposition ⇢(µ) =P
n ⇢n(µ) | ni h n| of the density matrix of the sys-

tem. The quantum Fisher information is correspond-
ingly rewritten as [14]

H(µ) =
X

p

[@µ⇢p(µ)]2

⇢p(µ)
+ 2

X

m 6=n

�mn|h m|@µ ni|2

with �nm = 2


⇢n(µ) � ⇢m(µ)

⇢n(µ) + ⇢m(µ)

�2
.

(23)

The first term in H(µ) is the classical Fisher information
of the distribution {⇢n(µ)}, while the second embodies
the genuinely quantum part, which will be the focus of
our attention from this point on.

In order to calculate it, we expand each eigenstate | ni
over the orthonormal basis of Fock states {|ki} as

| ni =
X

k

 nk |ki , (24)

so that Eq. (23) becomes H(µ) = HC(µ) + HQ(µ) with
HC(µ) =

P
p
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H(µ) = max{⇧̂j} F (µ), which can be cast into the form
can write

H(µ) = Tr[⇢(µ)L̂2(µ)]. (20)

The quantum Fisher information is thus independent of
the specific measurement strategy and leads to the ex-
tension of the Cramér-Rao bound to the quantum do-
main

Var(µ) � 1

MH(µ)
, (21)

which embodies the ultimate limit to the precision of
the estimate of µ. Optimal quantum measurements cor-
respond to POVMs whose F (µ) equals the quantum
Fisher information.

Eq. (19) is a Lyapunov matrix equation whose general
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states of the BEC, generated in a random way. (b) Parameter
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way.

solution reads

L̂(µ) = 2

Z 1

0

dt e�⇢(µ)t@µ⇢(µ)e⇢(µ)t

= 2
X

n,m

h m|@µ⇢(µ)| ni
⇢n(µ) + ⇢m(µ)

| mi h n| ,
(22)

where we have used the spectral decomposition ⇢(µ) =P
n ⇢n(µ) | ni h n| of the density matrix of the sys-

tem. The quantum Fisher information is correspond-
ingly rewritten as [14]

H(µ) =
X

p

[@µ⇢p(µ)]2

⇢p(µ)
+ 2

X

m 6=n

�mn|h m|@µ ni|2

with �nm = 2


⇢n(µ) � ⇢m(µ)

⇢n(µ) + ⇢m(µ)

�2
.

(23)

The first term in H(µ) is the classical Fisher information
of the distribution {⇢n(µ)}, while the second embodies
the genuinely quantum part, which will be the focus of
our attention from this point on.

In order to calculate it, we expand each eigenstate | ni
over the orthonormal basis of Fock states {|ki} as

| ni =
X

k

 nk |ki , (24)

so that Eq. (23) becomes H(µ) = HC(µ) + HQ(µ) with
HC(µ) =

P
p
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FIG. 5: (Color online) Distribution of values taken by the pa-
rameter ξm [panel (a)] and ξv [panel (b)] obtained for 100
randomly-generated initial states of the BEC. Here we have
taken the parameters used in panels (c) and (d) of Fig. 3. We
have taken t0 = 0.07/κ and t1 = 0.8/κ.
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of obtaining the outcome x at a set value of µ. Quan-
tum mechanically, such probabilities are calculated via
the Born rule assuming the system at hand is in a state
ρ(µ) determined by a set value of µ. For the case of a
discrete-measurement spectrum, which will be the one
we will concentrate on in the rest of this manuscript,
we thus have pj = Tr[ρ(µ)Π̂j ], and the observable to
be measured is generally described by a positive oper-
ator valued measurement (POVM) built as {Π̂j : Π̂j ≥
0,
∑
j Π̂j = 1̂1}. Introducing the symmetric logarithmic

derivative as the self-adjoint operator that satisfies the
relation [5]

∂µρ(µ) =
1

2
[L̂(µ)ρ(µ) + ρ(µ)L̂(µ)], (19)

and optimising F (µ) over all possible quantum mea-
surements leads us to the quantum Fisher information
H(µ) = max{Π̂j} F (µ), which can be cast into the form

H(µ) = Tr[ρ(µ)L̂2(µ)]. (20)

The quantum Fisher information is thus independent of
the specific measurement strategy and leads to the ex-
tension of the Cramér-Rao bound to the quantum do-
main

Var(µ) ≥ 1

MH(µ)
, (21)

which embodies the ultimate limit to the precision of
the estimate of µ. Optimal quantum measurements cor-
respond to POVMs whose F (µ) equals the quantum
Fisher information. Eq. (19) is a Lyapunov matrix equa-
tion whose general solution reads

L̂(µ) = 2

∫ ∞

0

dt e−ρ(µ)t∂µρ(µ)eρ(µ)t

= 2
∑

n,m

〈ψm|∂µρ(µ)|ψn〉
ρn(µ) + ρm(µ)

|ψm〉 〈ψn| ,
(22)

where we have used the spectral decomposition of the
density matrix of the system ρ(µ) =

∑
n ρn(µ) |ψn〉 〈ψn|.

The quantum Fisher information is correspondingly
rewritten as [5]

H(µ) =
∑

p

[∂µρp(µ)]2

ρp(µ)
+ 2

∑

m 6=n
σmn|〈ψm|∂µψn〉|2 (23)

with σnm = 2
[
ρn(µ)−ρm(µ)
ρn(µ)+ρm(µ)

]2
. The first term in H(µ)

is the classical Fisher information of the distribution
{ρn(µ)}, while the second embodies the genuinely
quantum part, which will be the focus of our attention
from this point on. In order to calculate such quantum
contribution, we expand each eigenstate |ψn〉 over the
orthonormal basis of Fock states {|k〉} as

|ψn〉 =
∑

k

ψnk |k〉 , (24)

so that Eq. (23) becomesH(µ) = HC(µ) +HQ(µ) with

HC(µ) =
∑

p

[∂µρp(µ)]2

ρp(µ)
and

HQ(µ) =
∑

m 6=n

4ρn ‖
∑
kk′ ∂µ (

∑
l ρl(µ)ψlkψ

∗
lk′)ψ

∗
mkψnk′‖

2

(ρn + ρm)2
.

(25)
On the other hand, for a multi-parameter scenario, i.e.

a situation where the state of the system under scrutiny
depends on a set of parameters {µ1, µ2, .., µd}, the for-
malism introduced above can be re-stated with the intro-
duction of the parameter-specific symmetric logarithmic
derivative

2∂µnρ(µ1, µ2, .., µd) = L̂µn
ρ+ ρL̂µn

(26)

from which it is possible to define the quantum Fisher
information matrix H with elements

Hnp = Tr

[
ρ(µ1, µ2, .., µd)

L̂µn
L̂µp

+ L̂µp
L̂µn

2

]
. (27)

The quantum Cramér-Rao bound stated above is now
replaced by the multi-parameter one that, in this paper,
will be considered to be under the form

∑

n

Var(µn) ≥ 1

M
Tr[H−1]. (28)

As before,M is the number of measurements performed
on the state of the system. While the single-parameter
quantum Cramér-Rao bound is, in principle, always
achievable through the design of an optimal measure-
ment strategy, the multi-parameter counterpart is not,
in general [13].

We now apply the frameworks discussed above to
the problem of estimating the parameters of the Hamil-
tonian of the atomic system through indirect measure-
ments performed on the field, which will be hereafter
considered as a “quantum probe”. We will implement
both a multi-parameter strategy and a “sequential” es-
timation approach, where M measurements are used to
estimate the tunnelling rate while a separate set of M
additional measurements are instrumental to the esti-
mation of the self-interaction strength.

In order to proceed along such lines, we need to de-
termine the state of the field after its interaction with
the atomic system in the double-well. Although the ac-
cessible part of the electromagnetic signal is what leaks
out of the probing cavity, considering the out-coming
field simply adds shot noise to the estimation procedure,
as it is straightforward to see by considering standard
cavity input-output relations. We thus concentrate on
the dynamics of the intra-cavity field, without any loss
of generality, and study the maximum precision with
which we can estimate the tunnelling rate R or the self-
interaction rate κ. The dynamical model that we aim at
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FIG. 6: (Color online) (a) Single-parameter estimation of the self-interaction rate κ: we plot the single-parameter quantitity Λ(κ) =
ln[H−1(κ)/β2] at a set value of the tunnelling rate R/β = 0.5, against the evolution time and the actual self-interaction energy κ.
In panel (b) we plot Λ(R) = ln[H−1(R)/β2] against R and βt at κ/β = 0.5. In both panels we have taken ωa/β = 0.1, ωc/β = 0.1,
ωp/β = 0.1, η/β = 0.1 and γ/β = 1.
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FIG. 7: (Color online) (a) Multi-parameter estimation approach. (b) Sequential estimation approach. In both panels we have used
the parameters γ/β = 1, η/β = 0.1, ωp/β = 0.1, ωc/β = 0.1, ωa/β = 0.1. The evolution time has been set at t = 10/β and we
have considered a two-atom initial state with mode 1 initially fully populated and an empty cavity.

solving is thus

∂tρ̃ =− i[ĤA + ĤI , ρ̃]− i∆C [â†â, ρ̃]

− iη[â† + â, ρ̃]− γD[â, ρ̃]
(29)

with ρ̃ the density matrix of the system in a frame rotat-
ing at the frequency of the pump. This equation is tack-
led by projecting it onto the elements of a number-state
basis of elements |n1, N − n1, na〉. Here |n1〉 [|N − n1〉]
is a state with n1 [N−n1] atoms in the well coupled [not
coupled] to the cavity, and |na〉 is a similar state for the
field. This allows us to get nested Bloch-like equations
that have then been solved numerically. By considering
the decomposition

ρ̃ =
∑
Cm1,ma
n1,na

|n1, N − n1, na〉 〈m1, N −m1,ma| (30)

with the sum being extended over all values of the in-
dices and Cm1,ma

n1,na
= 〈m1, N −m1,ma| ρ̃ |n1, N − n1, na〉,

we get the reduced field state (in the Schrödinger pic-
ture)

ρC =
∑

n1,na,ma

e−i(na−ma)ωptCn1,ma
n1,na

|na〉 〈ma| , (31)

which is then used to apply the quantum parameter es-
timation framework introduced above.

Before attacking the problem of estimating both the
key parameters of the system’s Hamiltonian, namely R
and κ, we construct a useful benchmark by by address-
ing a single-parameter estimation problem where we
fix one of such parameters and evaluate the accuracy
of estimation of the other one. This study is reported
in Fig. 6. Panel (a) shows the behavior of the quantity
Λ(κ) = ln[H−1(κ)/β2] at R = 0.15β, which gives infor-
mation on the value of the minimum variance associated
with the estimation of the self-interaction energy. While
it should be clear that the value of Λ(κ) depends on the
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instant of time at which the estimation procedure is im-
plemented, we highlight the fact that different estima-
tion performances might be achieved as the actual value
of κ is changed. We thus show such parameter against
the dimensionless evolution time βt and the value taken
by κ (in units of β). A similar analysis for the case of
the estimation of the tunnelling rate R is reported in
Fig. 6 (b), where we study Λ(R) = ln[H−1(R)/β2] in
the (βt,R/β) space at κ/β = 0.15. Only a very weak
dependence on the actual value taken by the parameter
to be estimated is displayed by Λ(µ) (µ = R, κ), which
is instead very much dependent on the actual time of
the evolution. Short times, associated with the transient
part of the evolution of the system, correspond to very
large values of the variance and thus a poor estimation.
On the other hand, by approaching the time-asymptotic
regime, where the system reaches a quasi steady-state,
an accurate estimation of any of the two parameters is
possible, in line with the expectations gathered from the
analysis based on our light-matter mapping.

We now pass to address a somehow different ques-
tion related to the possibility to estimate both the tun-
nelling and self-interaction rates, and thus characterize
completely the non-trivial part of the Hamiltonian of
the system. As anticipated above, when dealing with
such a multi-parameter problem, one can adopt either a
parallel or a sequential approach. The performance of
the two approaches, in terms of uncertainty associated
with the estimation process, might differ substantially.
In order to gather a quantitative comparison, in Fig. 7
we plot the natural logarithm of the minimum variance
Var(µ) achieved in the process of estimating κ and R

for, respectively, the multi-parameter strategy and the
sequential strategy. Refs. [14] have discussed efficient
ways for the estimation of the parameters of a generic
quadratic Hamiltonian for two bosonic modes. For the
multi-parameter (sequential) strategy, such variance is
determined by the quantity Λmp(R, κ) = ln[(H−1(R) +
H−1(κ))/(2β2)] (Λsq(R, κ) = ln[(H−1(R)+H−1(κ))/β2]).
The factor 2 introduced in Λmp(R, κ) is necessary to
compare fairly with Λse(R, κ).

The dynamical nature of the problem that we are ad-
dressing, then makes the study quite rich and complex.
In light of what we have found through the analysis of
the single-parameter estimation process, our study (not
reported here) shows that both Λmp(R, κ) and Λse(R, κ)
change dynamically, providing smaller uncertainties at
larger evolution times. Therefore, in order to minimise
the effects of the transient dynamics, we decide to fo-
cus on the long-time limit and take βt = 10 in all of the
quantitative studies presented here. Fig. 7 is well rep-
resentative of the results that we have gathered, encom-
passing both the dynamical regimes that we have ad-
dressed throughout our study, i.e. the case of R ∼ κ and
the tunnelling dominated configuration. The inspection
of Fig. 7 reveals that both the multi-parameter and se-
quential approaches give rise to a rather rich behavior
of the minimum variance associated with the parame-
ters being estimated. The parameters entering our sim-
ulations should be chosen properly, as the sensitivity of
the estimation indeed strongly depends on our working
point.

In general, the best option between the sequential and
multi-parameter approach depends strongly on the val-
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ues of κ and R that we aim at estimating. While Fig. 8
(a) illustrates a case where a multi-parameter estimation
strategy is almost always inferior to the sequential ap-
proach, panel (b) explores a working point where this
is not always the case, thus making any general pre-
diction very difficult. However, we can abandon such
a ‘point-by-point’ analysis in favour of an ‘integrated’
evaluation of the estimation performance. Our line of
thoughts would be the following: in a given estima-
tion problem, it is unlikely to be completely ignorant
of the order of magnitude taken by the parameter that
we aim at determining. Differently, it is reasonable to
expect that pre-available information (for instance on
the actual working conditions under which an experi-
ment would be run) could be used to gauge the plau-
sible range of values that it could take. The question
that we aim at addressing, in this case, would be: For
unknown parameters {µj} lying in the regions {Ωµj

}, which
estimation strategy (either multi-parameter or sequential) is
more advantageous, on average? In our case, a quantita-
tive assessment of such a problem could come from the
consideration of the average value taken by Λmp(R, κ)
and Λse(R, κ). This is what is shown by the dashed lines
in Fig. 8. Clearly, the consideration of such an average
figure of merit, although making us lose the details of
the point-to-point behavior of the minimum variances
associated with the estimates of R and κ, provides use-
ful information: a sequential approach turns out to be
more advantageous than the multi-parameter strategy,
which delivers a consistently larger value of the asso-
ciated minimum variance. Such a behavior is not re-
stricted to the working point used in Fig. 8 but turns out
to be consistent across the range of values considered in
Fig. 7.

IV. CONCLUSIONS AND OUTLOOK

We have proposed a QET-based approach to the de-
termination of key parameters in the dynamics of an
atomic system loaded into a two-well potential. Our
technique makes use of a local quantum probe embod-
ied by the field of an optical cavity that is coupled only

to one of the wells of the potential. We have shown that
a variety of methods can be applied in order to estimate
crucial features of the dynamics of the double well, from
the population imbalance between the wells to the ac-
tual on-site self interaction energy and tunnelling rate
characterizing the Hamiltonian of the atoms loaded into
the potential. By evaluating the quantum Fisher infor-
mation associated with the specific problem at hand, we
have been able to determine the quantum-limited pre-
cision with which is possible to estimate the parame-
ters of the problem’s Hamiltonian in both a sequential
and a multi-parameter estimation approach. While the
best strategy to follow in order to achieve such ideal es-
timates appears to depend crucially on the actual dy-
namical working point at hand, our work opens up a
series of routes that will be explored in our forthcoming
work, from the estimate of the temperature of the atoms
loaded in the wells to the explicit quantification of the
rate at which the atomic system equilibrates.
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