44,480 research outputs found

    A rare and threatening complication in a cirrhotic patient

    Get PDF
    info:eu-repo/semantics/publishedVersio

    DSMC evaluation of the Navier-Stokes shear viscosity of a granular fluid

    Full text link
    A method based on the simple shear flow modified by the introduction of a deterministic non-conservative force and a stochastic process is proposed to measure the Navier-Stokes shear viscosity in a granular fluid described by the Enskog equation. The method is implemented in DSMC simulations for a wide range of values of dissipation and density. It is observed that, after a certain transient period, the system reaches a hydrodynamic stage which tends to the Navier-Stokes regime for long times. The results are compared with theoretical predictions obtained from the Chapman-Enskog method in the leading Sonine approximation, showing quite a good agreement, even for strong dissipation.Comment: 6 pages, 4 figures; to appear in Rarefied Gas Dynamics: 24th International Symposium (AIP Conference Proceedings

    Is Λ\LambdaCDM an effective CCDM cosmology?

    Full text link
    We show that a cosmology driven by gravitationally induced particle production of all non-relativistic species existing in the present Universe mimics exactly the observed flat accelerating Λ\LambdaCDM cosmology with just one dynamical free parameter. This kind of scenario includes the creation cold dark matter (CCDM) model [Lima, Jesus & Oliveira, JCAP 011(2010)027] as a particular case and also provides a natural reduction of the dark sector since the vacuum component is not needed to accelerate the Universe. The new cosmic scenario is equivalent to Λ\LambdaCDM both at the background and perturbative levels and the associated creation process is also in agreement with the universality of the gravitational interaction and equivalence principle. Implicitly, it also suggests that the present day astronomical observations cannot be considered the ultimate proof of cosmic vacuum effects in the evolved Universe because Λ\LambdaCDM may be only an effective cosmology.Comment: 6 pages, 2 figures, changes in the abstract, introduction, new references and typo correction

    Nonlinear viscosity and velocity distribution function in a simple longitudinal flow

    Full text link
    A compressible flow characterized by a velocity field ux(x,t)=ax/(1+at)u_x(x,t)=ax/(1+at) is analyzed by means of the Boltzmann equation and the Bhatnagar-Gross-Krook kinetic model. The sign of the control parameter (the longitudinal deformation rate aa) distinguishes between an expansion (a>0a>0) and a condensation (a<0a<0) phenomenon. The temperature is a decreasing function of time in the former case, while it is an increasing function in the latter. The non-Newtonian behavior of the gas is described by a dimensionless nonlinear viscosity η∗(a∗)\eta^*(a^*), that depends on the dimensionless longitudinal rate a∗a^*. The Chapman-Enskog expansion of η∗\eta^* in powers of a∗a^* is seen to be only asymptotic (except in the case of Maxwell molecules). The velocity distribution function is also studied. At any value of a∗a^*, it exhibits an algebraic high-velocity tail that is responsible for the divergence of velocity moments. For sufficiently negative a∗a^*, moments of degree four and higher may diverge, while for positive a∗a^* the divergence occurs in moments of degree equal to or larger than eight.Comment: 18 pages (Revtex), including 5 figures (eps). Analysis of the heat flux plus other minor changes added. Revised version accepted for publication in PR

    Studying light propagation in a locally homogeneous universe through an extended Dyer-Roeder approach

    Full text link
    Light is affected by local inhomogeneities in its propagation, which may alter distances and so cosmological parameter estimation. In the era of precision cosmology, the presence of inhomogeneities may induce systematic errors if not properly accounted. In this vein, a new interpretation of the conventional Dyer-Roeder (DR) approach by allowing light received from distant sources to travel in regions denser than average is proposed. It is argued that the existence of a distribution of small and moderate cosmic voids (or "black regions") implies that its matter content was redistributed to the homogeneous and clustered matter components with the former becoming denser than the cosmic average in the absence of voids. Phenomenologically, this means that the DR smoothness parameter (denoted here by αE\alpha_E) can be greater than unity, and, therefore, all previous analyses constraining it should be rediscussed with a free upper limit. Accordingly, by performing a statistical analysis involving 557 type Ia supernovae (SNe Ia) from Union2 compilation data in a flat Λ\LambdaCDM model we obtain for the extended parameter, αE=1.26−0.54+0.68\alpha_E=1.26^{+0.68}_{-0.54} (1σ1\sigma). The effects of αE\alpha_E are also analyzed for generic Λ\LambdaCDM models and flat XCDM cosmologies. For both models, we find that a value of αE\alpha_E greater than unity is able to harmonize SNe Ia and cosmic microwave background observations thereby alleviating the well-known tension between low and high redshift data. Finally, a simple toy model based on the existence of cosmic voids is proposed in order to justify why αE\alpha_E can be greater than unity as required by supernovae data.Comment: 5 pages, 2 figures. Title modified, results unchanged. It matches version published as a Brief Report in Phys. Rev.

    Gravitational waves in the generalized Chaplygin gas model

    Full text link
    The consequences of taking the generalized Chaplygin gas as the dark energy constituent of the Universe on the gravitational waves are studied and the spectrum obtained from this model, for the flat case, is analyzed. Besides its importance for the study of the primordial Universe, the gravitational waves represent an additional perspective (besides the CMB temperature and polarization anisotropies) to evaluate the consistence of the different dark energy models and establish better constraints to their parameters. The analysis presented here takes this fact into consideration to open one more perspective of verification of the generalized Chapligin gas model applicability. Nine particular cases are compared: one where no dark energy is present; two that simulate the Λ\Lambda-CDM model; two where the gas acts like the traditional Chaplygin gas; and four where the dark energy is the generalized Chaplygin gas. The different spectra permit to distinguish the Λ\Lambda-CDM and the Chaplygin gas scenarios.Comment: Latex file, 9 pages, 11 figures eps forma

    osp(1|2) Conformal Field Theory

    Full text link
    We review some results recently obtained for the conformal field theories based on the affine Lie superalgebra osp(1|2). In particular, we study the representation theory of the osp(1|2) current algebras and their character formulas. By means of a free field representation of the conformal blocks, we obtain the structure constants and the fusion rules of the model. (Lecture delivered at the CERN-Santiago de Compostela-La Plata Meeting, "Trends in Theoretical Physics", La Plata, Argentina, April-May 1997).Comment: 16 pages, 1 figure, LaTe
    • …
    corecore