77,094 research outputs found

    Hamilton-Jacobi Approach for Power-Law Potentials

    Get PDF
    The classical and relativistic Hamilton-Jacobi approach is applied to the one-dimensional homogeneous potential, V(q)=αqnV(q)=\alpha q^n, where α\alpha and nn are continuously varying parameters. In the non-relativistic case, the exact analytical solution is determined in terms of α\alpha, nn and the total energy EE. It is also shown that the non-linear equation of motion can be linearized by constructing a hypergeometric differential equation for the inverse problem t(q)t(q). A variable transformation reducing the general problem to that one of a particle subjected to a linear force is also established. For any value of nn, it leads to a simple harmonic oscillator if E>0E>0, an "anti-oscillator" if E<0E<0, or a free particle if E=0. However, such a reduction is not possible in the relativistic case. For a bounded relativistic motion, the first order correction to the period is determined for any value of nn. For n>>1n >> 1, it is found that the correction is just twice that one deduced for the simple harmonic oscillator (n=2n=2), and does not depend on the specific value of nn.Comment: 12 pages, Late

    Energy Conditions and Segre Classification of Phantom Fields

    Full text link
    Recent discoveries in the field of observational cosmology have provided increasing evidence that the Universe is undergoing a late time acceleration, which has also stimulated speculations on the nature of the dark component responsible for such a phenomenon. Among several candidates discussed in the current literature, phantom fields, an exotic scalar field with a negative kinetic term and that violates most of the classical energy conditions, appear as a real possibility according to recent observational analysis. In this paper we examine the invariant characterization for the energy-momentum tensor of phantom fields through the Segre algebraic classification in the framework of general relativity. We also discuss some constraints which are imposed on the values of V(ϕ)V(\phi) from the classical energy conditions.Comment: 4 pages, 1 figure, to appear in Phys. Lett.

    The relevance of random choice in tests of Bell inequalities with atomic qubits

    Get PDF
    It is pointed out that a loophole exists in experimental tests of Bell inequality using atomic qubits, due to possible errors in the rotation angles of the atomic states. A sufficient condition is derived for closing the loophole

    New coupled quintessence cosmology

    Full text link
    A component of dark energy has been recently proposed to explain the current acceleration of the Universe. Unless some unknown symmetry in Nature prevents or suppresses it, such a field may interact with the pressureless component of dark matter, giving rise to the so-called models of coupled quintessence. In this paper we propose a new cosmological scenario where radiation and baryons are conserved, while the dark energy component is decaying into cold dark matter (CDM). The dilution of CDM particles, attenuated with respect to the usual a−3a^{-3} scaling due to the interacting process, is characterized by a positive parameter Ï”\epsilon, whereas the dark energy satisfies the equation of state px=ωρxp_x=\omega \rho_x (ω<0\omega < 0). We carry out a joint statistical analysis involving recent observations from type Ia supernovae, baryon acoustic oscillation peak, and Cosmic Microwave Background shift parameter to check the observational viability of the coupled quintessence scenario here proposed.Comment: 7 pages, 7 figures. Minor corrections to match published versio

    Wave Equations for Classical Two-Component Proca Fields in Curved Spacetimes with Torsionless Affinities

    Full text link
    The world formulation of the full theory of classical Proca fields in generally relativistic spacetimes is concisely reviewed and the entire set of pertinent field equations is transcribed in a straightforward way into the framework of one of the Infeld-van der Waerden formalisms. Some well-known calculational techniques are then utilized for deriving the wave equations that control the propagation of the fields allowed for. It appears that no interaction couplings between such fields and electromagnetic curvatures are carried by the wave equations at issue. What results is, in effect, that the only interactions which ultimately occur in the theoretical context under consideration involve strictly Proca fields and wave functions for gravitons.Comment: Many improvements on the paper have still been made. In particular, its title has been modified so as to conform further to one of its main aim

    Is the transition redshift a new cosmological number?

    Full text link
    Observations from Supernovae Type Ia (SNe Ia) provided strong evidence for an expanding accelerating Universe at intermediate redshifts. This means that the Universe underwent a transition from deceleration to acceleration phases at a transition redshift ztz_t of the order unity whose value in principle depends on the cosmology as well as on the assumed gravitational theory. Since cosmological accelerating models endowed with a transition redshift are extremely degenerated, in principle, it is interesting to know whether the value of ztz_t itself can be observationally used as a new cosmic discriminator. After a brief discussion of the potential dynamic role played by the transition redshift, it is argued that future observations combining SNe Ia, the line-of-sight (or "radial") baryon acoustic oscillations, the differential age of galaxies, as well as the redshift drift of the spectral lines may tightly constrain ztz_t, thereby helping to narrow the parameter space for the most realistic models describing the accelerating Universe.Comment: 12 pages, 5 figures. Some discussions about how to estimate the transition redshift have been added. New data by Planck and H(z) data have been mentioned. New references have been adde

    Energy Conditions and Supernovae Observations

    Full text link
    In general relativity, the energy conditions are invoked to restrict general energy-momentum tensors on physical grounds. We show that in the standard Friedmann-Lemaitre-Robertson-Walker approach to cosmological modelling where the equation of state of the cosmological fluid is unknown, the energy conditions provide model-independent bounds on the behavior of the distance modulus of cosmic sources as a function of the redshift. We use both the gold and the legacy samples of current type Ia supenovae to carry out a model-independent analysis of the energy conditions violation in the context of standard cosmology.Comment: 4 pages, 2 figures; v2: References added, misprints corrected, published in Phys.Rev.D in the present for
    • 

    corecore