50,058 research outputs found

    Boundary Conditions for Kerr-AdS Perturbations

    Get PDF
    The Teukolsky master equation and its associated spin-weighted spheroidal harmonic decomposition simplify considerably the study of linear gravitational perturbations of the Kerr(-AdS) black hole. However, the formulation of the problem is not complete before we assign the physically relevant boundary conditions. We find a set of two Robin boundary conditions (BCs) that must be imposed on the Teukolsky master variables to get perturbations that are asymptotically global AdS, i.e. that asymptotes to the Einstein Static Universe. In the context of the AdS/CFT correspondence, these BCs allow a non-zero expectation value for the CFT stress-energy tensor while keeping fixed the boundary metric. When the rotation vanishes, we also find the gauge invariant differential map between the Teukolsky and the Kodama-Ishisbashi (Regge-Wheeler-Zerilli) formalisms. One of our Robin BCs maps to the scalar sector and the other to the vector sector of the Kodama-Ishisbashi decomposition. The Robin BCs on the Teukolsky variables will allow for a quantitative study of instability timescales and quasinormal mode spectrum of the Kerr-AdS black hole. As a warm-up for this programme, we use the Teukolsky formalism to recover the quasinormal mode spectrum of global AdS-Schwarzschild, complementing previous analysis in the literature.Comment: 33 pages, 6 figure

    AdS nonlinear instability: moving beyond spherical symmetry

    Full text link
    Anti-de Sitter (AdS) is conjectured to be nonlinear unstable to a weakly turbulent mechanism that develops a cascade towards high frequencies, leading to black hole formation [1,2]. We give evidence that the gravitational sector of perturbations behaves differently from the scalar one studied in [2]. In contrast with [2], we find that not all gravitational normal modes of AdS can be nonlinearly extended into periodic horizonless smooth solutions of the Einstein equation. In particular, we show that even seeds with a single normal mode can develop secular resonances, unlike the spherically symmetric scalar field collapse studied in [2]. Moreover, if the seed has two normal modes, more than one resonance can be generated at third order, unlike the spherical collapse of [2]. We also show that weak turbulent perturbative theory predicts the existence of direct and inverse cascades, with the former dominating the latter for equal energy two-mode seeds.Comment: 7 pages, no figures, 2 table

    Ages and metallicities of star clusters: new calibrations and diagnostic diagrams from visible integrated spectra

    Get PDF
    We present homogeneous scales of ages and metallicities for star clusters from very young objects, through intermediate-age ones up to the oldest known clusters. All the selected clusters have integrated spectra in the visible range, as well as reliable determinations of their ages and metallicities. From these spectra equivalent widths (EWs) of KCaII, Gband(CH) and MgI metallic, and Hdelta, Hgamma and Hbeta Balmer lines have been measured homogeneously. The analysis of these EWs shows that the EW sums of the metallic and Balmer H lines, separately, are good indicators of cluster age for objects younger than 10 Gyr, and that the former is also sensitive to cluster metallicity for ages greater than 10 Gyr. We propose an iterative procedure for estimating cluster ages by employing two new diagnostic diagrams and age calibrations based on the above EW sums. For clusters older than 10 Gyr, we also provide a calibration to derive their overall metal contents.Comment: 9 pages, 4 figures, accepted by A&

    Localised AdS5Ă—S5\bf{AdS_5\times S^5} Black Holes

    Full text link
    We numerically construct asymptotically global AdS5Ă—S5\mathrm{AdS}_5\times \mathrm{S}^5 black holes that are localised on the S5\mathrm{S}^5. These are solutions to type IIB supergravity with S8\mathrm S^8 horizon topology that dominate the theory in the microcanonical ensemble at small energies. At higher energies, there is a first-order phase transition to AdS5\mathrm{AdS}_5-SchwarzschildĂ—S5\times \mathrm{S}^5. By the AdS/CFT correspondence, this transition is dual to spontaneously breaking the SO(6)SO(6) R-symmetry of N=4\mathcal N=4 super Yang-Mills down to SO(5)SO(5). We extrapolate the location of this phase transition and compute the expectation value of the resulting scalar operators in the low energy phase.Comment: 11 pages, 6 figure

    Lumpy AdS5Ă—\bf{_5\times} S5\bf{^5} Black Holes and Black Belts

    Full text link
    Sufficiently small Schwarzschild black holes in global AdS5Ă—_5\timesS5^5 are Gregory-Laflamme unstable. We construct new families of black hole solutions that bifurcate from the onset of this instability and break the full SO(6)(6) symmetry group of the S5^5 down to SO(5)(5). These new "lumpy" solutions are labelled by the harmonics â„“\ell. We find evidence that the â„“=1\ell = 1 branch never dominates the microcanonical/canonical ensembles and connects through a topology-changing merger to a localised black hole solution with S8^8 topology. We argue that these S8^8 black holes should become the dominant phase in the microcanonical ensemble for small enough energies, and that the transition to Schwarzschild black holes is first order. Furthermore, we find two branches of solutions with â„“=2\ell = 2. We expect one of these branches to connect to a solution containing two localised black holes, while the other branch connects to a black hole solution with horizon topology S4Ă—S4\mathrm S^4\times\mathrm S^4 which we call a "black belt".Comment: 20 pages (plus 17 pages for Appendix on Kaluza-Klein Holography), 14 figure

    Tracking Vector Magnetograms with the Magnetic Induction Equation

    Full text link
    The differential affine velocity estimator (DAVE) developed in Schuck (2006) for estimating velocities from line-of-sight magnetograms is modified to directly incorporate horizontal magnetic fields to produce a differential affine velocity estimator for vector magnetograms (DAVE4VM). The DAVE4VM's performance is demonstrated on the synthetic data from the anelastic pseudospectral ANMHD simulations that were used in the recent comparison of velocity inversion techniques by Welsch (2007). The DAVE4VM predicts roughly 95% of the helicity rate and 75% of the power transmitted through the simulation slice. Inter-comparison between DAVE4VM and DAVE and further analysis of the DAVE method demonstrates that line-of-sight tracking methods capture the shearing motion of magnetic footpoints but are insensitive to flux emergence -- the velocities determined from line-of-sight methods are more consistent with horizontal plasma velocities than with flux transport velocities. These results suggest that previous studies that rely on velocities determined from line-of-sight methods such as the DAVE or local correlation tracking may substantially misrepresent the total helicity rates and power through the photosphere.Comment: 30 pages, 13 figure

    Spectral evolution of star clusters in the Large Magellanic Cloud: I. Blue concentrated clusters in the age range 40-300 Myr

    Full text link
    Integrated spectroscopy of a sample of 17 blue concentrated Large Magellanic Cloud (LMC) clusters is presented and its spectral evolution studied. The spectra span the range ~3600-6800A with a resolution of ~14A FWHM, being used to determine cluster ages and, in connection with their spatial distribution, to explore the LMC structure and cluster formation history. Cluster reddening values were estimated by interpolation, using the available extinction maps. We used two methods to derive cluster ages: (i) template matching, in which line strengths and continuum distribution of the cluster spectra were compared and matched to those of template clusters with known astrophysical properties, and (ii) equivalent width (EW) method, in which new age/metallicity calibrations were used together with diagnostic diagrams involving the sum of EWs of selected spectral lines (KCaII, G band (CH), MgI, Hdelta, Hgamma and Hbeta). The derived cluster ages range from 40Myr (NGC2130 and SL237) to 300Myr (NGC1932 and SL709), a good agreement between the results of the two methods being obtained. Combining the present sample with additional ones indicates that cluster deprojected distances from the LMC center are related to age in the sense that inner clusters tend to be younger. Spectral libraries of star clusters are useful datasets for spectral classifications and extraction of parameter information for target star clusters and galaxies. The present cluster sample complements previous ones, in an effort to gather a spectral library with several clusters per age bin.Comment: 13 pages, 22 figures. Accepted for publication in A&

    Static, spherically symmetric solutions with a scalar field in Rastall gravity

    Full text link
    Rastall's theory belongs to the class of non-conservative theories of gravity. In vacuum, the only non-trivial static, spherically symmetric solution is the Schwarzschild one, except in a very special case. When a canonical scalar field is coupled to the gravity sector in this theory, new exact solutions appear for some values of the Rastall parameter aa. Some of these solutions describe the same space-time geometry as the recently found solutions in the kk-essence theory with a power function for the kinetic term of the scalar field. There is a large class of solutions (in particular, those describing wormholes and regular black holes) whose geometry coincides with that of solutions of GR coupled to scalar fields with nontrivial self-interaction potentials; the form of these potentials, however, depends on the Rastall parameter aa. We also note that all solutions of GR with a zero trace of the energy-momentum tensor, including black-hole and wormhole ones, may be re-interpreted as solutions of Rastall's theory.Comment: Latex file, 18 pages. To fit published versio

    Quasinormal modes of asymptotically flat rotating black holes

    Full text link
    We study the main properties of general linear perturbations of rotating black holes in asymptotically flat higher-dimensional spacetimes. In particular, we determine the quasinormal mode (QNM) spectrum of singly spinning and equal angular momenta Myers-Perry black holes (MP BHs). Emphasis is also given to the timescale of the ultraspinning and bar-mode instabilities in these two families of MP BHs. For the bar-mode instabilities in the singly spinning MP BH, we find excellent agreement with our linear analysis and the non-linear time evolution of Shibata and Yoshino for d=6,7 spacetime dimensions. We find that d=5 singly spinning BHs are linearly stable. In the context of studying general relativity in the large dimension limit, we obtain the QNM spectrum of Schwarzschild BHs and rotating MP BHs for large dimensions. We identify two classes of modes. For large dimensions, we find that in the limit of zero rotation, unstable modes of the MP BHs connect to a class of Schwarzschild QNMs that saturate to finite values.Comment: 52 pages. 25 figure
    • …
    corecore