879 research outputs found

    Intramural Duodenal Haematoma after Endoscopic Biopsy: Case Report and Review of the Literature

    Get PDF
    The development of intramural duodenal haematoma (IDH) after small bowel biopsy is an unusual lesion and has only been reported in 18 children. Coagulopathy, thrombocytopenia and some special features of duodenal anatomy, e.g. relatively fixed position in the retroperitoneum and numerous submucosal blood vessels, have been suggested as a cause for IDH. The typical clinical presentation of IDH is severe abdominal pain and vomiting due to duodenal obstruction. In addition, it is often associated with pancreatitis and cholestasis. Diagnosis is confirmed using imaging techniques such as ultrasound, magnetic resonance imaging or computed tomography and upper intestinal series. Once diagnosis is confirmed and intestinal perforation excluded, conservative treatment with nasogastric tube and parenteral nutrition is sufficient. We present a case of massive IDH following endoscopic grasp forceps biopsy in a 5-year-old girl without bleeding disorder or other risk for IDH, which caused duodenal obstruction and mild pancreatitis and resolved within 2 weeks of conservative management. Since duodenal biopsies have become the common way to evaluate children or adults for suspected enteropathy, the occurrence of this complication is likely to increase. In conclusion, the review of the literature points out the risk for IDH especially in children with a history of bone marrow transplantation or leukaemia

    To servitize is to (re)position : utilizing a Porterian view to understand servitization and value systems

    Get PDF
    Drawing on the case of a global servitizing company in the ship power industry, we use a Porterian toolkit for analyzing the implications of industry power and its consequences on firm vertical (re)positioning within the value system. Whereas repositioning has been seen as a way of moving closer to customers and obtaining new competencies, strategic moves aimed at increasing companies’ sphere of influence were neglected. This chapter illustrates how the power approach to repositioning, through different alternative mechanisms, complements the widespread capability view and contributes to value system analysis in servitization.fi=vertaisarvioitu|en=peerReviewed

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore