47,391 research outputs found

    Lower Mass Bound on the WW^\prime mass via Neutrinoless Double Beta Decay in a 3-3-1 Model

    Full text link
    The discovery of neutrino masses has raised the importance of studies in the context of neutrinoless double beta decay, which constitutes a landmark for lepton number violation. The standard interpretation is that the light massive neutrinos, that we observed oscillating in terrestrial experiments, mediate double beta decay. In the minimal 3-3-1 model, object of our study, there is an additional contribution that stems from the mixing between a new charged vector boson, WW^{\prime}, and the Standard Model W boson. Even after setting this mixing to be very small, we show that tight constraints arise from the non-observation of neutrinoless double beta decay. Indeed, we derive bounds on the mass of the WW^{\prime} gauge boson that might exceed those from collider probes, and most importantly push the scale of symmetry breaking beyond its validity, leading to the exclusion of the minimal 3-3-1 model.Comment: 16 pages, 5 figure

    K X-Ray Energies and Transition Probabilities for He-, Li- and Be-like Praseodymium ions

    Full text link
    Theoretical transition energies and probabilities for He-, Li- and Be-like Praseodymium ions are calculated in the framework of the multi-configuration Dirac-Fock method (MCDF), including QED corrections. These calculated values are compared to recent experimental data obtained in the Livermore SuperEBIT electron beam ion trap facility

    Impact of stellar companions on precise radial velocities

    Full text link
    Context: With the announced arrival of instruments such as ESPRESSO one can expect that several systematic noise sources on the measurement of precise radial velocity will become the limiting factor instead of photon noise. A stellar companion within the fiber is such a possible noise source. Aims: With this work we aim at characterizing the impact of a stellar companion within the fiber to radial velocity measurements made by fiber-fed spectrographs. We consider the contaminant star either to be part of a binary system whose primary star is the target star, or as a background/foreground star. Methods: To carry out our study, we used HARPS spectra, co-added the target with contaminant spectra, and then compared the resulting radial velocity with that obtained from the original target spectrum. We repeated this procedure and used different tunable knobs to reproduce the previously mentioned scenarios. Results: We find that the impact on the radial velocity calculation is a function of the difference between individual radial velocities, of the difference between target and contaminant magnitude, and also of their spectral types. For the worst-case scenario in which both target and contaminant star are well centered on the fiber, the maximum contamination for a G or K star may be higher than 10 cm/s, on average, if the difference between target and contaminant magnitude is Δm\Delta m < 10, and higher than 1 m/s if Δm\Delta m < 8. If the target star is of spectral type M, Δm\Delta m < 8 produces the same contamination of 10 cm/s, and a contamination may be higher than 1 m/sComment: Accepted for publication in A&A on 29/12/2019 - 14 page

    Radial distribution function of penetrable sphere fluids to second order in density

    Full text link
    The simplest bounded potential is that of penetrable spheres, which takes a positive finite value ϵ\epsilon if the two spheres are overlapped, being 0 otherwise. In this paper we derive the cavity function to second order in density and the fourth virial coefficient as functions of TkBT/ϵT^*\equiv k_BT/\epsilon (where kBk_B is the Boltzmann constant and TT is the temperature) for penetrable sphere fluids. The expressions are exact, except for the function represented by an elementary diagram inside the core, which is approximated by a polynomial form in excellent agreement with accurate results obtained by Monte Carlo integration. Comparison with the hypernetted-chain (HNC) and Percus-Yevick (PY) theories shows that the latter is better than the former for T1T^*\lesssim 1 only. However, even at zero temperature (hard sphere limit), the PY solution is not accurate inside the overlapping region, where no practical cancelation of the neglected diagrams takes place. The exact fourth virial coefficient is positive for T0.73T^*\lesssim 0.73, reaches a minimum negative value at T1.1T^*\approx 1.1, and then goes to zero from below as 1/T41/{T^*}^4 for high temperatures. These features are captured qualitatively, but not quantitatively, by the HNC and PY predictions. In addition, in both theories the compressibility route is the best one for T0.7T^*\lesssim 0.7, while the virial route is preferable if T0.7T^*\gtrsim 0.7.Comment: 10 pages, 2 figures; v2: minor changes; to be published in PR

    Probing the Cosmological Principle in the counts of radio galaxies at different frequencies

    Get PDF
    According to the Cosmological Principle, the matter distribution on very large scales should have a kinematic dipole that is aligned with that of the CMB. We determine the dipole anisotropy in the number counts of two all-sky surveys of radio galaxies. For the first time, this analysis is presented for the TGSS survey, allowing us to check consistency of the radio dipole at low and high frequencies by comparing the results with the well-known NVSS survey. We match the flux thresholds of the catalogues, with flux limits chosen to minimise systematics, and adopt a strict masking scheme. We find dipole directions that are in good agreement with each other and with the CMB dipole. In order to compare the amplitude of the dipoles with theoretical predictions, we produce sets of lognormal realisations. Our realisations include the theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated redshift distributions which fit the NVSS and TGSS source counts, and errors in flux calibration. The measured dipole for NVSS is  ⁣2\sim\!2 times larger than predicted by the mock data. For TGSS, the dipole is almost  ⁣5\sim\! 5 times larger than predicted, even after checking for completeness and taking account of errors in source fluxes and in flux calibration. Further work is required to understand the nature of the systematics that are the likely cause of the anomalously large TGSS dipole amplitude.Comment: 13 pages, 8 figures, 2 tables; Significant improvements. Version accepted by JCA

    Revisiting the correlation between stellar activity and planetary surface gravity

    Full text link
    Aims: We re-evaluate the correlation between planetary surface gravity and stellar host activity as measured by the index log(RHKR'_{HK}). This correlation, previously identified by Hartman (2010), is now analyzed in light of an extended measurements dataset, roughly 3 times larger than the original one. Methods: We calculated the Spearman's rank correlation coefficient between the two quantities and its associated p-value. The correlation coefficient was calculated for both the full dataset and the star-planet pairs that follow the conditions proposed by Hartman (2010). In order to do so, we considered effective temperatures both as collected from the literature and from the SWEET-Cat catalog, which provides a more homogeneous and accurate effective temperature determination. Results: The analysis delivers significant correlation coefficients, but with a lower value than those obtained by Hartman (2010). Yet, the two datasets are compatible, and we show that a correlation coefficient as large as previously published can arise naturally from a small-number statistics analysis of the current dataset. The correlation is recovered for star-planet pairs selected using the different conditions proposed by Hartman (2010). Remarkably, the usage of SWEET-Cat temperatures leads to larger correlation coefficient values. We highlight and discuss the role of the correlation betwen different parameters such as effective temperature and activity index. Several additional effects on top of those discussed previously were considered, but none fully explains the detected correlation. In light of the complex issue discussed here, we encourage the different follow-up teams to publish their activity index values in the form of log(RHKR'_{HK}) index so that a comparison across stars and instruments can be pursued.Comment: 11 pages, 3 figures, accepted for publication in A&

    Bond behavior of self consolidating concrete

    Get PDF
    The new generation of innovative projects has led to the use of greater amounts of reinforcement and the development of concrete with specific characteristics. It is necessary to use a material that ensures the uniformity of the cross section, as well as the adherence of the existing reinforcement, and due to this, the self-consolidating concrete becomes an technique alternative has great potential to achieve these properties. The aim of this paper is to analyze the bond behavior of self-consolidating concrete that was obtained by means of the Beam Test performed within a large experimental campaign of characterization. Four types of SCC were studied with two strength levels (40 MPa and 60MPa) and two different types of granular skeletons, using two specimens at each age (3, 7, and 28 days). All specimens were tested with a corrugated steel bar 10 mm in diameter. The results show that the adhesion tension independently of resistance presents a rapidly evolving at 7 days reached 95% of the total adhesion by 28 days.Postprint (published version
    corecore