29 research outputs found

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Substantial differences in soil viral community composition within and among four Northern California habitats.

    No full text
    Viruses contribute to food web dynamics and nutrient cycles in diverse ecosystems, yet the biogeographical patterns that underlie these viral dynamics are poorly understood, particularly in soil. Here, we identified trends in soil viral community composition in relation to habitat, moisture content, and physical distance. We generated 30 soil viromes from four distinct habitats (wetlands, grasslands, woodlands, and chaparral) by selectively capturing virus-sized particles prior to DNA extraction, and we recovered 3432 unique viral species (dsDNA vOTUs). Viral communities differed significantly by soil moisture content, with viral richness generally higher in wet compared to dry soil habitats. However, vOTUs were rarely shared between viromes, including replicates <10 m apart, suggesting that soil viruses may not disperse well and that future soil viral community sampling strategies may need to account for extreme community differences over small spatial scales. Of the 19% of vOTUs detected in more than one virome, 93% were from the same habitat and site, suggesting greater viral community similarity in closer proximity and under similar environmental conditions. Within-habitat differences indicate that extensive sampling would be required for rigorous cross-habitat comparisons, and results highlight emerging paradigms of high viral activity in wet soils and soil viral community spatial heterogeneity

    Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy.

    No full text
    Many of the world's most pressing issues, such as the emergence of zoonotic diseases, can only be addressed through interdisciplinary research. However, the findings of interdisciplinary research are susceptible to miscommunication among both professional and non-professional audiences due to differences in training, language, experience, and understanding. Such miscommunication contributes to the misunderstanding of key concepts or processes and hinders the development of effective research agendas and public policy. These misunderstandings can also provoke unnecessary fear in the public and have devastating effects for wildlife conservation. For example, inaccurate communication and subsequent misunderstanding of the potential associations between certain bats and zoonoses has led to persecution of diverse bats worldwide and even government calls to cull them. Here, we identify four types of miscommunication driven by the use of terminology regarding bats and the emergence of zoonotic diseases that we have categorized based on their root causes: (1) incorrect or overly broad use of terms; (2) terms that have unstable usage within a discipline, or different usages among disciplines; (3) terms that are used correctly but spark incorrect inferences about biological processes or significance in the audience; (4) incorrect inference drawn from the evidence presented. We illustrate each type of miscommunication with commonly misused or misinterpreted terms, providing a definition, caveats and common misconceptions, and suggest alternatives as appropriate. While we focus on terms specific to bats and disease ecology, we present a more general framework for addressing miscommunication that can be applied to other topics and disciplines to facilitate more effective research, problem-solving, and public policy
    corecore