3 research outputs found

    Diagonalization in Formal Mathematics

    Get PDF
    The use of diagonalization reasonings is transversal to the Mathematical practise. Since Cantor, diagonalization reasonings are used in a great variety of areas that vanish from Topology to Logic. The objective of the present thesis was to study the formal aspects of diagonalization in Logic and more generally in the Mathematical practise. The main goal was to find a formal theory that is behind important diagonalization phenomena in Mathematics. We started by the study of diagonalization in theories of Arithmetic: Diagonalization Lemma and self-reference. In particular, we argued that important properties related to self-reference are not decidable, and we argued that the diagonalization of formulas is substantially different from the diagonalization of terms, more precisely, the Diagonal Lemma cannot prove the Strong Diagonal Lemma. We studied in detail Yablo’s Paradox. By presenting a minimal theory to express Yablo’s Paradox, we argued that Yablo’s Paradox is not a paradox about Arithmetic. From that theory and with the help of some notions of Temporal Logic, we claimed that Yablo’s Paradox is self-referential. After that, we studied several paradoxes — the Liar, Russell’s Paradox, and Curry’s Paradox— and Löb’s Theorem, and we presented a common origin to those paradoxes and theorem: Curry System. Curry Systems were studied in detail and a consistency result for specific conditions was offered. Finally, we presented a general theory of diagonalization, we exemplified the formal use of the theory, and we studied some results of Mathematics using that general theory. All the work that we present on this thesis is original. The fourth chapter gave rise to a paper by the author ([SK17]) and the third chapter will also give rise in a short period of time to a paper. Regarding the other chapters, the author, together with his Advisors, is also preparing a paper

    On Notions of Provability

    Get PDF
    In this thesis, we study notions of provability, i.e. formulas B(x,y) such that a formula ϕ is provable in T if, and only if, there is m ∈ N such that T ⊢ B(⌜ϕ⌝,m) (m plays the role of a parameter); the usual notion of provability, k-step provability (also known as k-provability), s-symbols provability are examples of notions of provability. We develop general results concerning notions of provability, but we also study in detail concrete notions. We present partial results concerning the decidability of kprovability for Peano Arithmetic (PA), and we study important problems concerning k-provability, such as Kreisel’s Conjecture and Montagna’s Problem: (∀n ∈ N.T ⊢k steps ϕ(n)) =⇒ T ⊢ ∀x.ϕ(x), [Kreisel’s Conjecture] and Does PA ⊢k steps PrPA(⌜ϕ⌝)→ϕ imply PA ⊢k steps ϕ? [Montagna’s Problem] Incompleteness, Undefinability of Truth, and Recursion are different entities that share important features; we study this in detail and we trace these entities to common results. We present numeral forms of completeness and consistency, numeral completeness and numeral consistency, respectively; numeral completeness guarantees that, whenever a Σb 1(S12 )-formula ϕ(⃗x ) is such that ⃗Q ⃗x .ϕ(⃗x ) is true (where ⃗Q is any array of quantifiers), then this very fact can be proved inside S12 , more precisely S12 ⊢ ⃗Q ⃗x .Prτ (⌜ϕ( •⃗ x )⌝). We examine these two results from a mathematical point of view by presenting the minimal conditions to state them and by finding consequences of them, and from a philosophical point of view by relating them to Hilbert’s Program. The derivability condition “provability implies provable provability” is one of the main derivability conditions used to derive the Second Incompleteness Theorem and is known to be very sensitive to the underlying theory one has at hand. We create a weak theory G2 to study this condition; this is a theory for the complexity class FLINSPACE. We also relate properties of G2 to equality between computational classes.O tema desta tese são noções de demonstração; estas últimas são fórmulas B(x,y) tais que uma fórmula ϕ é demonstrável em T se, e só se, existe m ∈ N tal que T ⊢ B(⌜ϕ⌝,m) (m desempenha o papel de um parâmetro). A noção usual de demonstração, demonstração em k-linhas (demonstração-k), demonstração em s-símbolos são exemplos de noções de demonstração. Desenvolvemos resultados gerais sobre noções de demonstração, mas também estudamos exemplos concretos. Damos a conhecer resultados parciais sobre a decidibilidade da demonstração-k para a Aritmética de Peano (PA), e estudamos dois problemas conhecidos desta área, a Conjectura de Kreisel e o Problema de Montagna: (∀n ∈ N.T ⊢k steps ϕ(n)) =⇒ T ⊢ ∀x.ϕ(x), [Conjectura de Kreisel] e PA ⊢k steps PrPA(⌜ϕ⌝)→ϕ implica PA ⊢k steps ϕ? [Problema de Montagna] A Incompletude, a Incapacidade de Definir Verdade, e Recursão são entidades que têm em comum características relevantes; nós estudamos estas entidades em detalhe e apresentamos resultados que são simultaneamente responsáveis pelas mesmas. Além disso, apresentamos formas numerais de completude e consistência, a completude numeral e a consistência numeral, respectivamente; a completude numeral assegura que, quando uma fórmula-Σb 1(S12) ϕ(⃗x ) é tal que ⃗Q ⃗x .ϕ(⃗x ) é verdadeira, então este facto pode ser verificado dentro de S12, mais precisamente S12 ⊢ ⃗Q ⃗x .Prτ (⌜ϕ( •⃗ x )⌝). Este dois resultados são analisados de um ponto de vista matemático onde apresentamos as condições mínimas para os demonstrar e apresentamos consequências dos mesmos, e de um ponto de vista filosófico, onde relacionamos os mesmos com o Programa de Hilbert. A condição de derivabilidade “demonstração implica demonstrabilidade da demonstração” é uma das condições usadas para derivar o Segundo Teorema da Incompletude e sabemos ser muito sensível à teoria de base escolhida. Nós criámos uma teoria fraca G2 para estudar esta condição; esta é uma teoria para a classe de complexidade FLINSPACE. Também relacionámos propriedades de G2 com igualdades entre classes de complexidade computacional

    On Notions of Provability

    Get PDF
    In this thesis, we study notions of provability, i.e. formulas B(x,y) such that a formula ' is provable in T if, and only if, there is m 2 N such that T ` B(p'q,m) (m plays the role of a parameter); the usual notion of provability, k-step provability (also known as k-provability), s-symbols provability are examples of notions of provability. We develop general results concerning notions of provability, but we also study in detail concrete notions. We present partial results concerning the decidability of k- provability for Peano Arithmetic (PA), and we study important problems concerning k-provability, such as Kreisel’s Conjecture and Montagna’s Problem: (8n 2 N.T `k steps '(n)) =) T ` 8x.'(x), [Kreisel’s Conjecture] Does PA `k steps PrPA(p'q) ! ' imply PA `k steps '? [Montagna’s Problem] Incompleteness, Undefinability of Truth, and Recursion are di↵erent entities that share important features; we study this in detail and we trace these entities to common results. We present numeral forms of completeness and consistency, numeral completeness and numeral consistency, respectively; numeral completeness guarantees that, whenever a⌃b1(S12)-formula'(x~)issuchthatQ~x~.'(x~)istrue(whereQ~ isanyarrayofquantifiers), then this very fact can be proved inside S12, more precisely S12 ` Q~ x~.Pr⌧(p'(x~• )q). We examine these two results from a mathematical point of view by presenting the minimal conditions to state them and by finding consequences of them, and from a philosophical point of view by relating them to Hilbert’s Program. The derivability condition “provability implies provable provability” is one of the main derivability conditions used to derive the Second Incompleteness Theorem and is known to be very sensitive to the underlying theory one has at hand. We create a weak theory G2 to study this condition; this is a theory for the complexity class FLINSPACE. We also relate properties of G2 to equality between computational classes
    corecore