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“The meaning of a proposition is the method of its
verification.” (Moritz Schlick)





Abstract

In this thesis, we study notions of provability, i.e. formulas B(x,y) such that a formula
' is provable in T if, and only if, there is m 2 N such that T ` B(p'q,m) (m plays the
role of a parameter); the usual notion of provability, k-step provability (also known as
k-provability), s-symbols provability are examples of notions of provability.

We develop general results concerning notions of provability, but we also study in
detail concrete notions. We present partial results concerning the decidability of k-
provability for Peano Arithmetic (PA), and we study important problems concerning
k-provability, such as Kreisel’s Conjecture and Montagna’s Problem:

(8n 2 N.T `k steps '(n)) =) T ` 8x.'(x), [Kreisel’s Conjecture]

and

Does PA `k steps PrPA(p'q)! ' imply PA `k steps '? [Montagna’s Problem]

Incompleteness, Undefinability of Truth, and Recursion are di↵erent entities that
share important features; we study this in detail and we trace these entities to common
results.

We present numeral forms of completeness and consistency, numeral completeness
and numeral consistency, respectively; numeral completeness guarantees that, whenever
a ⌃b

1(S
1
2)-formula '(~x ) is such that ~Q ~x .'(~x ) is true (where ~Q is any array of quantifiers),

then this very fact can be proved inside S12, more precisely S12 ` ~Q ~x .Pr⌧(p'(
•
~x )q). We

examine these two results from a mathematical point of view by presenting the minimal
conditions to state them and by finding consequences of them, and from a philosophical
point of view by relating them to Hilbert’s Program.

The derivability condition “provability implies provable provability” is one of the main
derivability conditions used to derive the Second Incompleteness Theorem and is known
to be very sensitive to the underlying theory one has at hand. We create a weak theory
G2 to study this condition; this is a theory for the complexity class FLINSPACE. We also
relate properties of G2 to equality between computational classes.

Keywords: Notions of Provability, k-provability, Kreisel’s Conjecture, Incompleteness,
Theory of Arithmetic, Numeral Completeness, Hilbert’s Program, Provabil-
ity Implies Provable Provability, Linear Space
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Resumo

O tema desta tese são noções de demonstração; estas últimas são fórmulas B(x,y) tais que
uma fórmula ' é demonstrável em T se, e só se, existe m 2 N tal que T ` B(p'q,m) (m
desempenha o papel de um parâmetro). A noção usual de demonstração, demonstração
em k-linhas (demonstração-k), demonstração em s-símbolos são exemplos de noções de
demonstração.

Desenvolvemos resultados gerais sobre noções de demonstração, mas também estuda-
mos exemplos concretos. Damos a conhecer resultados parciais sobre a decidibilidade da
demonstração-k para a Aritmética de Peano (PA), e estudamos dois problemas conhecidos
desta área, a Conjectura de Kreisel e o Problema de Montagna:

(8n 2 N.T `k steps '(n)) =) T ` 8x.'(x), [Conjectura de Kreisel]

e

PA `k steps PrPA(p'q)! ' implica PA `k steps '? [Problema de Montagna]

A Incompletude, a Incapacidade de Definir Verdade, e Recursão são entidades que
têm em comum características relevantes; nós estudamos estas entidades em detalhe e
apresentamos resultados que são simultaneamente responsáveis pelas mesmas.

Além disso, apresentamos formas numerais de completude e consistência, a comple-
tude numeral e a consistência numeral, respectivamente; a completude numeral assegura
que, quando uma fórmula-⌃b

1(S
1
2) '(~x ) é tal que ~Q ~x .'(~x ) é verdadeira, então este facto

pode ser verificado dentro de S12, mais precisamente S12 ` ~Q ~x .Pr⌧(p'(
•
~x )q). Este dois resul-

tados são analisados de um ponto de vista matemático onde apresentamos as condições
mínimas para os demonstrar e apresentamos consequências dos mesmos, e de um ponto
de vista filosófico, onde relacionamos os mesmos com o Programa de Hilbert.

A condição de derivabilidade “demonstração implica demonstrabilidade da demonstra-
ção” é uma das condições usadas para derivar o Segundo Teorema da Incompletude e
sabemos ser muito sensível à teoria de base escolhida. Nós criámos uma teoria fraca G2

para estudar esta condição; esta é uma teoria para a classe de complexidade FLINSPACE.
Também relacionámos propriedades de G2 com igualdades entre classes de complexidade
computacional.
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1
Introduction

Proofs are, in their essence, justifications for (mathematical) statements. To have a proof
of a given proposition is something much deeper than just knowing the fact that the
proposition is true; it gives insights on why that is the case, it sometimes gives an algo-
rithm to use the proposition, and more importantly, it gives a concrete meaning to the
fact that the considered proposition is true.

Every field of enquiry has particular ways of acting and particular ways of establishing
facts; but there is one aspect that is transversal to all of them: the need to give justifications.
The scientist does not dogmatically decide how nature looks, on the contrary she collects
data and creates a scientific justification for the propositions of science. Proofs are for the
mathematician what justifications and verifiability are to the scientist; they constitute the
scientific nature of mathematics.

The urge to study mathematical proofs gained special traction in the 20th century.
Since then, proofs became mathematical objects by their own right. That century became
famous for the study of the limits of several areas: the limits of language, the limits of
what can be precisely stated, and, of course, the limits of the use and applicability of
proofs. We follow that approach here.

Proofs are the main focus of the present thesis. Here, we try to quantitatively measure
them, to study their expressive power, and to find possible limitations to their use. We
achieve this goal via the study of notions of provability; these are formulas B(x,y) (for a
certain theory T ) with the following property:

T ` ' () 9n 2 N.T ` B(p'q,n). [NProv]

The role played by the n in the previous condition is the role of a parameter that measures
some aspect of certain proof of ': it can be the number of steps, the number of symbols,
et cetera. Clearly, the usual arithmetized notion of provability, usually denoted by Pr⇠

1



CHAPTER 1. INTRODUCTION

(for a certain numeration ⇠ of the axioms of T ), is a notion of provability, where the
parameter is trivially the code of a certain proof of the considered formula. Moreover,
the arithmetized notions of k-steps provability, T `k steps ·, and s-symbols provability,
T `s symbols ·, are notions of provability. Without danger of confusion, we identify the
arithmetized notions of provability with the non-arithmetized versions; so we consider
T `k steps · and T `s symbols · as being notions of provability without the need to arithmetize
them. The defining feature of a (general) notion of provability B(',p) is that a formula
' is provable in T exactly when there is a parameter p such that B(',p) holds: this p can
have very distinct natures; it can even be a function.

This general perspective of the study of notions of provability allows one to obtain
a clearer landscape on how proofs work. In our thesis, we present general results con-
cerning notions of provability—see, for example, Theorems 4.3.1 and 5.7.1—, but we also
study particular notions in the spirit of quantitatively measure proofs, studying their
expressive power, and finding possible limitations to their use.

k-steps provability, better known as k-provability, is one of the main focus of our
work. In [73], [31], and [58] the decidability of this relation was studied for several for-
malizations of Peano arithmetic (PA); in Chapter 3, we study its decidability for particular
values of k for the usual axiomatization of PA. Our approach is very general, since it is
parametrized by unification algorithms.

Kreisel’s Conjecture is an open problem about k-provability [18]:

(8n 2 N.T `k steps '(n)) =) T ` 8x.'(x). [Kreisel’s Conjecture]

It was studied in [73], [58], [32], [68], [74], [15], and [1]. We study this Conjecture in
Chapter 4 for a new notion of provability T `h · that depends on recursive functions h
(T `h · is a notion of provability because T ` ' () 9h.T `h ': here the parameter is a
recursive function). Moreover, we study a problem proposed by Montagna [18, p. 9]:

Does PA `k steps PrPA(p'q)! ' imply PA `k steps '? [Montagna’s Problem]

We give a negative answer to this problem for some axiomatizations of PA.
In Chapter 2, we dive into the limitations of what is provable: the Incompleteness

phenomena. There, we relate Incompleteness to: Rice’s Theorem, Kleene’s Normal Form,
the Undefinability of Truth, and Hilbert-Bernays Paradox. There have been several works
that explored these relations, see for instance [36] or [93]—usually, such relations are
either too general, in the sense that one abstracts so much that one looses track of the
specificities of the original objects; or too specific, in the sense that one focuses so much
in the particularities that one cannot see the “big picture”. We show di↵erent relations
and we try to maintain the right balance of abstractness versus concreteness.

The notion of provability Pr⇠ , the usual notion of provability, is studied in Chapters 5
and 6. In the former, we present a provable form of completeness, Numeral Completeness.
This form of completeness guarantees that, whenever a ⌃b

1(S
1
2)-formula '(~x ) is such that

2



~Q ~x .'(~x ) is true (where ~Q is any array of quantifiers), then this very fact can be proved

inside S12, more precisely S12 ` ~Q ~x .Pr⌧(p'(
•
~x )q). This result entails a form of provable

consistency, Numeral Consistency: if Prf is a �b

1(S
1
2)-proof predicate for a consistent theory

T , then, there is an 9�b

1(S
1
2)-numeration ⌧ such that S12 ` 8x.Pr⌧(p¬Prf (p?q,

•
x)q).

We characterize the provability predicates for which Numeral Completeness and Nu-
meral Consistency hold, and we study the Second Incompleteness Theorem. In addition,
we present a general negative bound on finitist proofs of consistency for notions of prov-
ability. In the second part of this Chapter, the philosophical part, we relate our results to
some versions of Hilbert’s Program.

Chapter 6 is devoted to the study of the derivability condition ‘provability implies
provable provability’, i.e. Pr⇠ (x)! Pr⇠ (pPr⇠ (

•
x)q). This condition is very sensitive to the

underlying theory, for example it is an open problem if it holds for I�0. We create a weak
theory G2 to study this condition; this is a theory for the complexity class FLINSPACE.
This is an interesting approach since we study the desired condition for a weak theory
and since it is uncommon to study metamathematics in theories that are obtained from
computational classes limited on space, and not on time. We also relate properties of G2

to equality between computational classes.
Each chapter of our thesis has an autonomous nature and notation: the reader can

independently read each one of them, the interdependence between any given two chap-
ters is minimal (as a consequence of this, some definitions are very slightly di↵erent from
chapter to chapter, since we want to focus di↵erent aspects in each chapter).

3
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2
Incompleteness, Undefinability of Truth,

Recursion

Introduction

The Incompleteness Theorems and the Undefinability of Truth Theorem are among the
most relevant results in logic; from model theory to proof theory, they changed the way
this field of knowledge is conceived. Similarly, the Second Recursion Theorem is one of
the pinnacles of recursion theory, as well as Rice’s Theorem. Despite their major signif-
icance, the proofs of these results are deceptively simple when one is given the suitable
formal background; furthermore, when one compares them, one gets the idea that there
is a lot in common between them. Moreover, even the results have a similar nature, e.g.
the First Incompleteness Theorem (G1) and Rice’s Theorem claim very similar limitations,
the former on provability, the latter on recursive properties of functions. There have been
several works that explored some of these relations, see for instance [36] or [93]—usually,
such relations are either too general, in the sense that one abstracts so much that one
looses track of the specificities of the original objects (theories of arithmetic); or too spe-
cific, in the sense that one focuses so much in the particularities that one cannot see the
“big picture”, id est one does not, in fact, relate them. In this chapter, we show di↵erent
relations and we try to maintain the right balance of abstractness versus concreteness,
that is to say, we present general results relating the mentioned Theorems always inside
theories of arithmetic.

There are several papers in the direction we aim at, but with di↵erent considerations.
For instance, [54] studies the interplay between Kolmogorov complexity and the Second
Incompleteness Theorem (G2); [67] studies incompleteness and jump hierarchies; Visser
in [100] derives G2 from the Undefinability of Truth; and [4] presents a general setting to
study incompleteness.

5



CHAPTER 2. INCOMPLETENESS, TRUTH, RECURSION

The current chapter is divided in three sections. In the first section, we explore how
G1 is related to Rice’s Theorem by developing a version of Kleene’s Normal Form with
formulas and provability, and by presenting an encompassing result of these facts.

The second section is devoted to the interplay between G1 and the non-recursiveness
of truth via recursion theory—we exhibit a general notion of incompleteness for recur-
sively enumerable sets.

In the third and last section, we present a general arithmetical form of the Diago-
nalization Lemma—one of the responsible for the feeling initially described about the
shared characteristics of the proofs of the incompleteness results and the Undefinabil-
ity of Truth—that encompasses: G1, the Undefinability of Truth, and Hilbert-Bernays
Paradox.

Preliminaries

Throughout this chapter, T denotes a (first-order) r.e. theory of arithmetic that is a con-
sistent extension of EA := I�0 + exp, where exp denotes the totality of the exponentiation
function (we implicitly assume the soundness of T ; see [39, pp. 294–315] for details on
EA). Unless otherwise stated, we assume that T has the same language as Q (see [90, pp.
55, 56] for details on this theory). Given a class of formulas �, we say that a formula '
is a �(T )-formula if there is a �-formula '0 T -equivalent to T . The classes ⌃n and all
standard notation are taken from [39, pp. 13–18, 62]. Furthermore, we use #' to denote
the Gödel-number of ', and p'q to denote the numeral of the Gödel-number of ', i.e.,
#' (here we assume the e�cient numerals [39, p. 304]).

As usual, we denote the standard proof predicate for T [90, p. 170] by ProofT (x,y)—with
the meaning that “y is the code of a T -proof of the formula coded by x” (this corresponds
to fixing a particular �0(T )-enumeration of the axioms of T , see [33] and [39]). We define
PrT (x) := 9y.ProofT (x,y), the standard provability predicate for T . We assume that the
reader is aware of the derivability conditions for PrT , see [39, p. 163] for further details.

Definition 2.0.1. We say that a formula Prf (x,y) is a proof predicate for T if it satisfies the
following conditions:

Prf 1: Prf (x,y) is �1(T );

Prf 2: For all n 2 N and formulas ', N |= Proof(p'q,n)$ Prf (p'q,n);

Prf 3: T ` 8x.8x0 .8y.(Prf (x,y)^Prf (x0 , y)! x = x
0).

A provability predicate for T is a predicate P(x) that satisfies

T ` 8x.(P(x)$9y.Prf (x,y)),

for a certain proof predicate Prf (x,y) for T . For a fixed provability predicate P, we also
define ConP := ¬P(p?q) and Con

1
P
:= ¬P(pP(p?q)q).

6



We assume •¬ such that T ` •¬p'q = p¬'q and
•! such that T ` p'q •! p q = p'!  q,

for all formulas ' and (formally, these can be either actual function-symbols of T or rep-
resented by �1(T )-formulas inside T ); we assume similar notations for the other connec-
tives. We assume S(x,y) such that for all formulas '(x) and terms t, T ` sub(p'(x)q,ptq) =
p'(t)q and numeral such that T ` numeral(n) = pnq, we define Feferman’s dot notation by
p'( •x)q := sub(p'(y)q,numeral(x)).

We remember that a theory T is complete if for every sentence ', either T ` ' or
T ` ¬'; it is said to be incomplete if it is not complete. Considering T , the completeness is
equivalent to1: for all sentences ', N |= ' =) T ` '. We say that T is !-consistent if there
is no formula '(x) such that T ` 9x.'(x) and, for all n 2 N, T ` ¬'(n). Now we present a
version of G1 (see the original in [37]).

Theorem 2.0.1 (G1). If T is !-consistent, then T is incomplete.

For more details on the previous result and on technical details such as !-consistency
we recommend [91]. Using Rosser’s argument, we can substitute !-consistent for the
usual consistency [39, p. 161].

The Second Incompleteness Theorem (G2) is:

Theorem 2.0.2 (G2). If T is consistent, then T �̀ ConPrT .

The Diagonalization Lemma was extracted by Carnap from Gödel’s initial proof of
G1:

Theorem 2.0.3 (Diagonalization Lemma). [78, p. 250] For every formula '(x) there is a
sentence  such that T `  $ '(p q).

There are several generalizations of the previous result, for example:

Theorem 2.0.4 (Two-Variable Diagonalization Lemma). [69, p. 208] For every ↵(x,y) there
is a formula '(x) such that T ` 8z.'(z)$ ↵(p'(x)q, z).

For the rest of this section, we assume that T has function-symbols for each primitive
recursive function. There is an analogue result for terms that was originally presented in
[51]:

Theorem 2.0.5 (Strong-Diagonalization Lemma). [90, p. 55] For every formula '(x), there
is a closed term t such that T ` p'(t)q = t.

1Here is a proof of our claim:

Proof. Firstly, suppose that T is complete. Let ' be any sentence such that N |= '. As by assumption T is
complete, then either T ` ' or T ` ¬'. If T ` ¬', then we would get, by the soundness of T , N |= ¬', a
contradiction; so T ` '. Thus, N |= ' =) T ` '.

Conversely, assume that, for all sentences ', N |= ' =) T ` '. Let ' be any sentence. We know that
either N |= ' or N |= ¬'; on the first case, using the implication, we get T ` ', and on the second one we get
T ` ¬'. In all, T ` ' or T ` ¬'. a

7



CHAPTER 2. INCOMPLETENESS, TRUTH, RECURSION

The following result is similar to the Strong-Diagonalization Lemma.

Theorem 2.0.6 (Term-Diagonalization Lemma). [75] For every term h(x) there is a closed
term t such that T ` h(ptq) = t.

It is not hard to see that one can prove the Diagonalization Lemma using the Strong-
Diagonalization Lemma, but the converse does not hold in the sense of the following
Theorem that claims that we cannot use the instances of the Diagonalization Lemma to
prove the instances of the Strong-Diagonalization Lemma.

Theorem 2.0.7. [83, §2] There is no formula ↵(x,y) such that: given a formula '(x), if  is
the sentence obtained from the Diagonalization Lemma applied to ↵(p'(x)q,x), then there is a
term t such that  is '(t) and T ` p'(t)q = t.

Despite this intrinsic distinction between (all) the Diagonalization Lemmas, in the end
of this chapter we will present a result that generalizes their use, it unifies diagonalization
of formulas and terms. Finally, we present two important facts that are very similar in
their layout (we will latter confirm that they share a common arithmetical structure).

Theorem 2.0.8 (Tarski’s Undefinability of Truth). [39, p. 159] There is no formula Tr(x)
such that, for all formulas ', T ` Tr(p'q)$ '.

The next result was original mentioned in the famous Grundlagen der Mathematik, by
Hilbert and Bernays; the reader can find further details in [75]. This result is relevant
because, just like the Undefinability of Truth, it shows the non-existence of a total form
of representability; the latter states the non-representability of truth, and this result
a�rms the non-representability of values when T has function-symbols for each primitive
recursive function.

Theorem 2.0.9 (Hilbert-Bernays Paradox). There is no term h(x) such that for all closed
terms t, T ` h(ptq) = t.

We present a proof of the previous result, since it is not a very well-known fact.

Proof. Let diag denote the primitive recursive function such that, for each term t(x),
T ` diag(pt(x)q) = pt(pt(x)q)q. Consider r(x) := h(diag(x)) + 1. Then, T ` diag(prq) =
pr(prq)q = ph(diag(prq)) + 1q. Set s := diag(prq). As T ` h(pr(prq)q) = r(prq), we get

T ` h(s) = h(diag(prq)) = h(pr(prq)q) = r(prq) = h(diag(prq)) + 1 = h(s) + 1,

a contradiction. a

It is important to observe that the previous result does not contradict Lemma 1.66 of
[39, p. 55] that guarantees the existence of a function evaluating terms in the language
{0,S,+,⇥}; here we have a terms for each primitive recursive function (the essential feature
is to have a term diag), something that does not occur in that context. Another way to
read the previous result is that we cannot extend the construction of Lemma 1.66 from
[39, p. 55] to the general context of having a term for each primitive recursive function.
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2.1. INCOMPLETENESS AND RICE’S THEOREM

2.1 Incompleteness and Rice’s Theorem

In this section, we trace the Second Recursion Theorem to the Diagonalization Lemma.
Moreover, we prove a generalization of Rice’s Theorem that is also responsible for G1.

Definition 2.1.1. A partial function f : Nk
* N is strongly representable in T (as a partial

function) if there is a formula '(x0, . . . ,xk�1, y) (not necessarily ⌃1, this notion is more
general than the usual one) such that

R1: For all m0, . . . ,mk�1,n 2 N, f (m0, . . . ,mk�1) ' n () T ` '(m0, . . . ,mk�1,n);

R2: T ` 8x0 · · ·8xk�1.9!y.'(x0, . . . ,xk�1, y).

The previous notion is clearly distinct from the usual one using ⌃1-formulas. In [80],
the reader can find a very simple proof of the following fact.

Theorem 2.1.1. All partial recursive functions are strongly representable in any r.e. extension
of Q as partial functions.

This means that strongly representability, although allowing formulas that are not
necessarily ⌃1, is a notion that can be captured in the very weak Q. Kleene’s Normal
Form gives a simple way to characterise all (partial) recursive functions [94, p. 15]. The
next result presents an alternative way to characterize them using provability instead of
Kleene’s Predicate.

Theorem 2.1.2 (Kleene’s Normal Form with Provability). The (partial) recursive functions
are exactly the functions f that can be defined by2

f ( ~m ) :=the first n that satisfies: Q ` '( ~m ,n) and

for all k < n it holds Q ` ¬'( ~m ,k),

for a certain formula '(~x ).

Proof. Suppose that g(m0, . . . ,mk�1) is a (partial) recursive function. Then, by Theo-
rem 2.1.1, there is a formula '(x0, . . . ,xk) such that, for all m0, . . . ,mk�1,n 2 N, one has
g(m0, . . . ,mk�1) ' n () Q ` '(m0, . . . ,mk�1,n). Considering such a formula '(x0, . . . ,xk),
since Q ` 8x0 · · ·8xk�1.9!y.'(x0, . . . ,xk�1, y), it is clear that

g(m0, . . . ,mk�1) ' the first n that satisfies: Q ` '( ~m ,n) and

for all k < n it holds Q ` ¬'( ~m ,k),

as wanted.

2Here '(x0, . . . ,xn) is used with the meaning that var(') ✓ {x0, . . . ,xn}, where var(') denotes the set of
the free-variables of '.
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Conversely, it is clear that if '(~x ) is a formula, then

f ( ~m ) :=the first n that satisfies: Q ` '( ~m ,n) and

for all k < n it holds Q ` ¬'( ~m ,k)

is a (partial) recursive function, since the following algorithm computes the desired
function, where Proof (x,y) ✓ N2 is the recursive relation defined by ProofQ(x,y):

input : ~m
output :n

c 0, j 0, a 0;
while a = 0 do

if Proof (#¬'( ~m ,c), j) then
c c +1, j 0;

end
if Not Proof (#'( ~m ,c), j) and Not Proof (#¬'( ~m ,c), j) then

j j +1;
end
if Proof (#'( ~m ,c), j) then

a 1;
end

end
return c

We are making use of the known fact that, given a formula, we can recursively specify
its arity, and the order of the variables. Clearly, for sentences the algorithm always outputs
0 whenever the sentence is Q-provable. a

By the previous result, the set of Gödel-numbers of the formulas constitute a set of
indices for the partial recursive functions. More precisely, given a formula ', one can
consider, in a recursive manner, the (partial) function defined by ' using the previous
proof. One can develop the theory of recursive functions using the described indices and
obtain all the standard results. In particular, one can consider the notation {#'} to denote
the (partial) function defined by the formula ' in the previous way.

One interesting fact about the previous result is that G1 is related to the partiality
of functions (these ideas and constructions will be used in the last result of this section,
Corollary 2.1.2). It is a known fact that G1 can be obtained from Kleene’s Normal Form
[90, p. 312]. The following result establishes a relation between two seemingly unrelated
forms of diagonalization—the Diagonalization Lemma and the Second Recursion Theo-
rem. Versions of it can be found in Theorems 0.6.9 and 0.6.12 of [92, pp. 50, 52], Section
5.2 of [95], and [6]. Here we state it more explicitly and for the very weak theory Q.
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2.1. INCOMPLETENESS AND RICE’S THEOREM

Theorem 2.1.3 (Second Recursion Theorem for Formulas). For each formula '(x,y,z), there
is a formula  (x,y) such that, for each n 2 N,

{# } (n) ' {#'} (# ,n).

Proof. From a version of the two-variables Diagonalization Lemma (this result works for
T =Q) for more variables, we know that there is a formula  (x,y) such that

Q `  (x,y)$ '(p q,x,y).

Thus, for n,m 2 N we have that:

1.) Q `  (n,m) () Q ` '(p q,n,m);

2.) Q ` ¬ (n,m) () Q ` ¬'(p q,n,m).

Hence, from Theorem 2.1.2, we conclude that {# } (n) ' {#'} (# ,n). a

We now present another proof of G1 using the very existence of partial functions.

Proof of Theorem 2.0.1. Suppose, aiming a contradiction, that T is complete. Consider
f : N* N a partial recursive function arbitrarily fixed such that there is n0 2 N where
f is not defined. By Theorem 2.1.1, we conclude that there is a formula '(x,y) that
strongly represents f in T . In particular, by R2, T ` 8x.9!y.'(x,y). So, T ` 9y.'(n0, y).
Thus, N |= 9y.'(n0, y). Therefore, by definition of a model, there is an m0 2 N such that
N |= '(n0,m0). As, by hypothesis, T is complete, it follows that3 T ` '(n0,m0). By R1
it follows that f (n0) ' m0, which is a contradiction because we assumed that f was not
defined for n0. a

The next result generalizes two important facts: G1 and Rice’s Theorem. It captures
the main reasoning behind those two theorems that state forms of a negative result: the
former incompleteness, the latter undecidability. As the reader will confirm, the main
feature that is being used is a version of the Diagonalization Lemma.

Theorem 2.1.4 (General Incompleteness). There are no formulas R(x,y,z, t), ⇧(x), �(x), ',
 , and � satisfying the following conditions:

C1: For every formula ↵, T `⇧(p↵q) =) T ` R(p'q,p↵q,p q,n), with
n 2 N arbitrary4;

C2: For every formula ↵, T ` ¬⇧(p↵q) =) T ` R(p'q,p↵q,p�q,n), with
n 2 N arbitrary;

3Let us prove that, under the assumption that T is complete, then N |= ' =) T ` '.

Proof. Let ' be a true sentence, videlicet N |= '. As T is complete, either T ` ' or T ` ¬'. Assume, by
way of contradiction, that T �̀'. Then, T ` ¬'; as T is sound, it follows N |= ¬'. But then N |= ' ^¬', a
contradiction. This yields T ` '. a

4That is to say, universally quantified.
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C3: There is a formula '0 such that T ` R(p'q,p'0q,p'0q,n), with n 2 N arbitrary, and
T `�(p'0q);

C4: For formulas ↵ and � satisfying T ` �(p↵q) ^ �(p�q), if T ` R(p'q,p↵q,p q,n) ^
R(p'q,p↵q,p�q,n), for all n 2 N, then T ` ¬⇧(p�q);

C5: For formulas ↵ and � satisfying T ` �(p↵q) ^ �(p�q), if T ` R(p'q,p↵q,p�q,n) ^
R(p'q,p↵q,p�q,n), for all n 2 N, then T `⇧(p�q);

C6: For all formulas ↵ such that T `�(p↵q), T �̀⇧(p↵q) =) T ` ¬⇧(p↵q).

In the previous result: ⇧ stands for an intuitive notion of provability/truth; R stands
for a relation that has some shared properties with a general form of equivalence; �
is identifying the considered domain (formulas, sentence, and so on);  represents a
general form of >; � represents a form of ?; and ' a formula to which a form of negative
diagonalization is going to be applied.

Proof of Theorem 2.1.4. Suppose, aiming a contradiction, that R, ⇧, �, ',  , and � do
satisfy C1–C6. By C3, there is a formula '0 such that T ` R(p'q,p'0q,p'0q,n), for each
n 2 N, and T ` �(p'0q). Suppose, aiming a contradiction, that T ` ⇧(p'0q). Then, by
C1, T ` R(p'q,p'0q,p q,n), and so T ` R(p'q,p'0q,p q,n) ^ R(p'q,p'0q,p'0q,n). By
C4 follows that T ` ¬⇧(p'0q), which is a contradiction. Hence, T �̀ ⇧(p'0q), and so
by C6, T ` ¬⇧(p'0q). By C2 and by what was previously concluded, it follows that
T ` R(p'q,p'0q,p�q,n)^R(p'q,p'0q,p'0q,n). Therefore, by C5, T ` ⇧(p'0q), which is
an absurdity. a

It is important to observe that C3 plays a major role in the proof; furthermore, it has
clear similarities with the Diagonalization Lemma (in a sense, the ' is being diagonalised
by '0). In fact, for the two next corollaries, C3 will follow immediately from that re-
sult. We now prove that G1 is a particular instance of the previous Theorem, namely an
instance that does not use all the variables.

Corollary 2.1.1 (Adapted G1). Suppose that T �̀ PrT (p?q). It is not the case that for all
sentences ↵, T ` PrT (p↵q) or T ` PrT (p¬↵q).

Proof. Suppose, aiming a contradiction, that for all sentences ↵, T ` PrT (p↵q) or T `
PrT (p¬↵q). Consider ⇧(x) := PrT (x), �(x) := Sent(x) (represents the sentences in T ), ' :=
¬PrT (x),  :=?, � := >, and R such that T ` R(p'0q,p'1q,p'2q,n)$ PrT (p'0(p'1q)$
'2(n)q). One should keep in mind that if ↵ is a sentence, we assume that T ` ↵(n) $
↵. Let us see that the conditions of the previous Theorem are satisfied. Clearly, T `
PrT (p↵q) =) T ` PrT (p¬PrT (p↵q) $?q); this means that C1 holds. Similarly, we
have T ` ¬PrT (p↵q) =) T ` PrT (p¬PrT (p↵q) $ >q), which means that C2 is satis-
fied. Condition C3 corresponds to the Diagonalization Lemma (with '0 the Gödel-
sentence). Suppose that T �̀ PrT (p↵q), with ↵ a sentence. Then, by hypothesis, T `

12



2.1. INCOMPLETENESS AND RICE’S THEOREM

PrT (p¬↵q), hence T ` PrT (p↵q)! PrT (p?q). By hypothesis again, either T ` PrT (pPrT (p?
q)q) or T ` PrT (p¬PrT (p?q)q). As T �̀ PrT (p?q), then T �̀ PrT (pPrT (p?q)q), and so T `
PrT (p¬PrT (p?q)q), consequently T ` ¬PrT (p?q). Hence, T ` ¬PrT (p↵q), which con-
firms C6. Let us see that the remaining conditions are satisfied. Suppose that we have
T ` PrT (p¬PrT (p↵q) $?q) ^ PrT (p¬PrT (p↵q) $ �q), with ↵ and � sentences. Hence,
T ` PrT (p¬�q). Suppose, aiming a contradiction, that T ` PrT (p�q). Then, T ` PrT (p?q),
which is a contradiction. So, T �̀ PrT (p�q). From a previously made reasoning, it follows
that T ` ¬PrT (p�q). This means that C4 holds. The confirmation that C5 holds is similar.
The result follows from the previous theorem. a

Now we prove that Rice’s Theorem [71, p. 150] is a particular instance of Theorem
2.1.4. The proof that we will present will be long since we will show that it can be
carried inside T , the increment is due to the technical apparatus and not to some possible
distance from Theorem 2.1.4. As the reader will see, the mentioned Theorem and its
proof perfectly fit as a generalization of the next fact.

Corollary 2.1.2 (Rice’s Theorem). Let P be a property of functions and S := {#'|{#'} has the
property P} such that there are # /2 S and #� 2 S , with {# } and {#�} total functions. Then,
S is not decidable. All this can be proved in T .

Proof. Suppose that S is decidable. Consider f the recursive function such that

f (n) :=

8>>><>>>:

1, n 2 S
0, n /2 S.

As f is recursive, by Theorem 2.1.1, there is (x,y) that strongly represents it. Consider Eq
such that T ` Eq(p↵q,hn0, . . . ,nki,x)$ PrT (p↵(n0, . . . ,nk,

•
x)q)^8y < x.PrT (p¬↵(n0, . . . ,nk,

•
y)q),

for every formula ↵. Take ' such that

{#'}(n,m) :=

8>>><>>>:

{# }(m), n 2 S
{#�}(m), n /2 S.

Consider R such that T ` R(p↵q,p�q,p�q,n)$9x.Eq(p↵q,hp�q,ni,x)^
Eq(p�q,hni,x). Take �(x) defining all formulas (we can omit it), and ⇧(x) := (x,1). Let
us see that the conditions of the Theorem are satisfied. Observe that, by hypothesis, {#'}
is total.

Suppose that T ` ⇧(p↵q). Then, #↵ 2 S , and so {#'}(#↵,n) ' {# }(n), with n 2 N.
Fix n 2 N. Take n0 := {# }(n) (it is defined because {# } is total by construction). Then,
T `  (n,n0) and, for all k < n0, T ` ¬ (n,k). Hence, T ` PrT (p (n,n0)q) and, for all
k < n0, T ` PrT (p¬ (n,k)q). As T ` k < n0 $ k = 0 _ k = 1 _ · · · _ k = n0 � 1, it follows
that T ` Eq(p q,hni,n0). As {#'}(#↵,n) ' n0, we conclude that T ` '(p↵q,n,n0) and,
for all k < n0, T ` ¬'(p↵q,n,k). Thus, T ` PrT (p'(p↵q,n,n0)q) and, for all k < n0, T `
PrT (p¬'(p↵q,n,k)q). This means that T ` Eq(p'q,hp↵q,ni,n0). In all, T ` R(p'q,p↵q,p q,n).
All together means that C1 holds.
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Suppose that T ` ¬⇧(p↵q). By the consistency of T , T �̀ F(p↵q). As T ` (p↵q,0) or
T `  (p↵q,1), we conclude that T `  (p↵q,0), and so #↵ /2 S . Following the reasoning
from before, it is easy to see that T ` R(p'q,p↵q,p�q,n), so C2 is satisfied. Take '0 the
formula given by Theorem 2.1.3. Then, {#'}(#'0,n) ' {#'0}(n). Following the reasoning
of C1, it is easy to see that T ` R(p'q,p'0q,p'0q,n), and so C3 holds.

Consider ↵ and � such that, for all n 2 N, T ` R(p'q,p↵q,p q,n)^R(p'q,
p↵q,p�q,n). Then, T ` 9x.Eq(p'q,hp↵q,ni,x)^Eq(p q,hni,x) and T ` 9x.Eq(p'q,hp↵q,ni,x)
^ Eq(p�q,hni,x). So, there is m 2 N such that N |= Eq(p'q,hp↵q,ni,m) ^ Eq(p q,hni,m).

Hence, N |= PrT (p'(p↵q,n,m)q)^ 8k < m.PrT (p¬'(p↵q,n,
•

k)q), so {#'}(#↵,n) = m. Simi-
larly, {# }(n) = m, and so {#'}(#↵,n) = {# }(n). As this holds for each n 2 N, it follows
that �x.{#'}(#↵,x) = {# }. In a similar, way one has that �x.{#'}(#↵,x) = {#�}. Hence,
{# } = {#�}, and so #� /2 S . This means that T ` (p�q,0). As (x,y) strongly represents
f , in particular T ` 8x.9!y. (x,y), consequently T ` ¬ (p�q,1), i.e., T ` ¬⇧(p�q). This
confirms C4. The confirmation of C5 is very similar. Finally, suppose that T �̀⇧(p↵q).
As T ` (p↵q,0) or T ` (p↵q,1), it follows that T ` (p↵q,0). As before, it follows that
T ` ¬⇧(p↵q), which confirms C6. a

The main idea of the previous proof was the construction of the relation R, that is
intended to capture functional equality, via the relation Eq. A more general result could
be established, namely one where we would not require the totality of {# } and {#�}. That
would correspond to a change in the relation R (intuitively, instead of claiming existence
it would claim unicity)—we decided to present the previous version since the increment
in generality would not correspond to the greater increment in complexity of the relation.

We can conclude that the Diagonalization Lemma was the main feature of Theorem
2.1.4, making it responsible for G1 and, more unexpectedly, for Rice’s Theorem.

2.2 Incompleteness via Recursion and the Non-Recursiveness
of Truth

In this section, we present a version of G1 using the “language” of recursion theory, more
concretely, we state G1 in terms of recursive functions. We start with several well-known
facts. Our approach is similar to the one considered in the study ofWeihrauch Complexity
[8].

Folklore 2.2.1. The following statements are equivalent:

1 A is a recursively enumerable set;

2 There is a (partial) recursive function f such that, for all n 2 N,

f (n) = 0 () n 2 A;

3 A = ; or there is a total recursive function f such that f (N) = A.
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2.2. INCOMPLETENESS VIA RECURSION AND THE NON-RECURSIVENESS OF
TRUTH

Folklore 2.2.2. The set ProvT := {#'|T ` '} is recursively enumerable.

The next result uses the Diagonalization Lemma, Gödels’ original paper [37] is the
first place where we have a clear indication of it.

Lemma 2.2.1. The set TrueN := {#'|N |= '} is not recursively enumerable.

Proof. (This result can be established using Post’s Theorem, but we decided to show the
reader yet another use of the Diagonalization Lemma.) Suppose, aiming a contradiction,
that TrueN is recursively enumerable. Then, by Folklore 2.2.1, there is a recursive function
f such that

f (n) = 0 () n 2 TrueN.

Let e be the index of f . Consider T (x,y,z) as being the Kleene T -Predicate and U(x) as
being the primitive recursive function created by Kleene to output the result of computa-
tions. It is a known fact that T (x,y,z) is a primitive recursive relation. Consider T(x,y,z)
a ⌃1-formula that represents T (x,y,z), and consider U(x,y) a ⌃1-formula that represents
the function U . Now, take the ⌃1(T )-formula

�(x,y) := 9z.(T(e,x,z)^ U(z,y)).

By the Diagonalization Lemma, there is a sentence ' such that

T ` '$ ¬�(p'q,0).

It is clear that N |= ' or N |= ¬'. Suppose that N |= '. Then, f (#') = 0, and so there
is w 2 N such that T (e,#',w) and U(w) = 0. This means that T ` T(e,p'q,w) ^ U(w,0).
Thus, T ` 9z.(T(e,p'q, z) ^ U(z,0)), i.e., T ` �(p'q,0). Therefore, N |= ¬', which is a
contradiction. Hence, N |= ¬'. So, N |= �(p'q,0). This means that there is w 2 N such
that N |= T(e,p'q,w) ^ U(w,0). As T(e,p'q,w) ^ U(w,0) is a ⌃1(T )-sentence and as T is
⌃1-complete, we can conclude that T ` T(e,p'q,w)^ U(w,0). So, T (e,#',w) and U(w) = 0.
Hence, f (#') = 0, and so N |= ', which is a contradiction. a

The previous result is a generalisation of Tarski’s Theorem on the Undefinability of
Truth, as the following consequence confirms. Besides being a generalization of Tarski’s
result, its interest comes from the fact that it is expressed in terms of recursive functions.

Corollary 2.2.1. [7, p. 222] Truth is not definable in T .

Proof. Suppose, aiming a contradiction, that truth is definable by a predicate Truth(x) in
T . Then, for all sentences ',

T ` Truth(p'q) () N |= '.

Take Proof (x,y) ✓ N2 as the recursive relation that expresses in N that “y is a T -proof of x”.
It is well-known that Proof (x,y) is primitive recursive [78, p. 233]. Take Not Proof (x,y)
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as being the relation that expresses that y is not a proof of x. Consider the following
algorithm

input :n
output :r

a 0, c 0, r 0;
while a = 0 do

if Proof (#Truth(n), c) then
a 1;

end
if Not Proof (#Truth(n), c) then

c c +1;
end

end
return r

Let f be the function computed by the previous algorithm. Clearly,

n 2 TrueN () f (n) = 0,

fromwhere we conclude that TrueN is recursively enumerable, which goes against Lemma
2.2.1. a

We say that a set A is complete with respect to a set B if there is a total recursive function
f such that f (A) = B. We say that A is incomplete with respect to B if A is not complete with
respect to B.

The next fact establishes a relation between the notion of completeness in terms of
recursive functions and the notion of completeness in T .

Theorem 2.2.1. If T is complete, then ProvT is complete with respect to TrueN.

Proof. Suppose that T is complete. Then for all sentences ',

N |= ' () T ` '.

Consider id as being the identity function. Clearly id is a total recursive function. By the
previous equivalence we conclude that ProvT = TrueN. Hence, id(ProvT ) = TrueN. From
this we conclude that ProvT is complete with respect to TrueN. a

The concept of completeness with respect to a given set is related to the concepts used
in the study of Weihrauch Complexity (see [8] for details on this topic).

The next result corresponds to Lemma 3.2.1. from [50, p. 51]. It is a very naïve fact
and seemingly innocent, but we are going to use it to frame the incompleteness of T using
the concepts we have just introduced; hence, we decided to call the result “Recursive
Transfer” because we are transfering recursive enumerability.
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2.3. GENERAL USE OF THE DIAGONALIZATION LEMMA

Theorem 2.2.2 (Recursive Transfer). If A is a recursively enumerable set and B is not recur-
sively enumerable, then A is incomplete with respect to B.

Proof. Suppose that A is a recursively enumerable set and B is not recursively enumerable.
Consider a total recursive function f : N! A in the conditions of Folklore 2.2.1, i.e. such
that f (N) = A. Suppose, aiming a contradiction, that A is complete with respect to B.
Then, there is a total recursive function g such that g(A) = B. Take h := g � f . Clearly,
h : N! B is a total recursive function such that h(N) = B, hence, by Folklore 2.2.1, B is
recursively enumerable, which is a contradiction. a

Finally, we can conclude that G1 follows from the Recursive Transfer.

Proof of Theorem 2.0.1. By Theorem 2.2.1, it su�ces to prove that ProvT is incomplete
with respect to TrueN. By Folklore 2.2.2, we know that ProvT is recursively enumerable,
and by Lemma 2.2.1 we have that TrueN is not recursively enumerable. Thus, by the
Recursive Transfer, we can conclude that ProvT is incomplete with respect to TrueN. a

2.3 General use of the Diagonalization Lemma

In this last section, we present a result that generalizes the use of the Diagonalization
Lemma and the Term-Diagonalization Lemma. We are aware that there are general results
that trace back several important diagonalization reasonings to a common theorem (for
instance [83, §5], [83, §6], and [104]). Although such approaches are very relevant, since
they generalize the use of diagonalization, we believe that they lose information when
one wants to see how far one can get just using the Diagonalization Lemmas (there, the
Diagonalization Lemmas correspond just to a function feature, they are not relevant
facts by their own right). Our objective with this section is not to present the use of
diagonalization in arithmetic in its most general form, rather we are interested in studying
just the use of the Diagonalization Lemmas and concluding that they are enough to get the
majority of the relevant meta-theorems of arithmetic. Our goal is to unify diagonalization
of formulas and diagonalization of terms in arithmetic. As we will see, the next result
delivers our goal, it can capture both types of reasoning.

Theorem 2.3.1 (General Diagonalization). Suppose that T has function-symbols sb and ng,
and formulas �(x), �0(x), and R(x,y) satisfying:

GD1: T ` “R is an equivalence relation”^8x.(�(x)!�0(x));

GD2: For all n 2 N satisfying T ` �0(n), there is m 2 N satisfying T ` �(m) such that T `
R(sb(n,m),m);

GD3: For all n 2 N such that T `�(n), T ` ¬R(ng(n),n);

GD4: If n,m 2 N satisfy T `�0(n)^�(m), then T ` R(ng(sb(n,m)),sb(ng(n),m));

17
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GD5: For all n 2 N satisfying T `�0(n), there is m 2 N such that T `�0(m)^m = ng(n). We
assume the same property substituting �0 for �;

GD6: If n,m 2 N satisfy T `�0(n)^�(m), then there is s 2 N such that T `�(s)^s = sb(n,m).

Then, there is no n 2 N satisfying T ` �0(n) such that: for all m 2 N satisfying T ` �(m), we
have T ` R(sb(n,m),m).

Proof. Suppose, aiming a contradiction, that n 2 N satisfies the desired conditions. From
conditions GD5 and GD2, there is m 2 N satisfying T ` �(m) and T ` R(sb(ng(n),m),m).
From GD4 we get T ` R(ng(sb(n,m)),sb(ng(n),m)), from GD1, T ` R(ng(sb(n,m)),m). By
the hypothesis on n, T ` R(sb(n,m),m). Together with what was concluded and using
GD1, one has that T ` R(ng(sb(n,m)),sb(n,m)), and so, from GD6 and GD3, T `?, which
by its turn goes against the consistency of T . a

In the previous Theorem, the relation R can be interpreted as being equality or logical
equivalence. In that context, GD2 is then a generalization of the Diagonalization Lemma
and of the Term-Diagonalization Lemma. Furthermore, ng is intended to represent a
function that always gives something di↵erent—“through the eyes of R”—from the initial
object, this constitutes a weak form of negation. sb is intended to represent a substitution
function compatible with ng according to R. Condition GD4 expresses how substitution
acts according to R. Conditions GD5 and GD6 are technical ones.

Definition 2.3.1. We say that T is a uniform theory of arithmetic if:

U1: T is a consistent extension of EA;

U2: There are a formula Fml(x) in T that identifies all formulas, i.e., T ` Fml(p'q) if, and
only if, ' is a formula; a formula Sent(x) that identifies all sentences; and a formula
oneVarFml(x) that identifies 1-variable formulas (with possibly several occurrences)
and also sentences5;

U3: There is a function-symbol •¬ that represents negation, i.e., such that for all formulas
', T ` •¬(p'q) = p¬'q. We will write •¬x := •¬(x);

U4: There is a function-symbol
•$ that represents equivalence, i.e., such that for all

formulas ' and  , T ` •$ (p'q,p q) = p'$  q. We will write x
•$ y :=

•$ (x,y);

U5: There are a function-symbol sub(x,y) and numeral such that, for all formulas '(x)
and  , T ` sub(p'(x)q,p q) = p'(p q)q and T ` numeral(n) = pnq. We assume that
if ' is a sentence, then T ` sub(p'q,p q) = p'q. We use Feferman’s dot notation:
p'( •x)q := sub(p'(y)q,numeral(x));

U6: T has a provability predicate P that satisfies the following properties:

5This name might confuse the reader, but one should keep in mind that oneVarFml includes sentences.
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P1: T ` 8Fml(x).8Fml(y).8Fml(z).P(x •$ x) ^ (P(x
•$ y) ^ (P(y

•$ z)) ! P(x
•$ z)) ^

(P(x
•$ y)! P(y

•$ x));

P2: For all formulas ', T ` P(p¬'$ 'q)! P(p?q);
P3: For all formulas ' and  , T ` P( •¬sub(p'q,p q) •$ sub( •¬p'q,p q)).

The next result is a generalization of Theorem 2.0.8.

Corollary 2.3.1 (Undefinability of Truth). Given T a uniform theory of arithmetic (P the
considered provability predicate for T ), let S be a consistent theory that contains T + ConP .
Then, there is no formula Tr(x) such that for all sentences  ,

S ` P(pTr(p q)$  q).

Proof. Consider �(x) := Sent(x), �0(x) := oneVarFml(x), sb(x,y) := sub(x,y), ng(x) := •¬x,
and R(x,y) := P(x

•$ y). Clearly, one can obtain condition GD1 of Theorem 2.3.1 from
condition P1. Condition GD2 follows from the Diagonalization Lemma. Furthermore,
using condition P2 and the fact that S extends T + ConP , one can obtain GD3. Condition
GD4 is obtainable from P3. Finally, condition GD5 follows from U3 and condition GD6
from U5. The result is a direct application of Theorem 2.3.1. a

Definition 2.3.2. We say that T is a Gödel-like theory if:

G1: T is a uniform theory of arithmetic;

G2: The provability predicate P also satisfies:

P4: For all formulas ' and  , T ` P(p' ^ q)$ (P(p'q)^P(p q));
P5: For all formulas ', T ` P(p'q)! P(pP(p'q)q);

P6: For all formulas ' and  , T ` P(p'!  q)! (P(p'q)! P(p q)).

The next fact generalizes G1.

Corollary 2.3.2 (Formalized G1). Let T be a Gödel-like theory (P the considered provability
predicate for T ). Then, it does not hold that, for all sentences ',

T + ConP + Con
1
P
` P(p'q)_P(p¬'q).

Proof. Suppose, aiming a contradiction, that the result holds. Consider ' a sentence.
From P4, we have that T +P(p' ^¬P(p'q)q) ` P(p'q)^P(p¬P(p'q)q). From P5 follows
that T + P(p' ^ ¬P(p'q)q) ` P(pP(p'q)q) ^ P(p¬P(p'q)q). From P6 we conclude that
T +P(p' ^¬P(p'q)q) ` P(p?q), hence T + ConT ` ¬P(p' ^¬P(p'q)q). By the assumption,
this means that T + ConP + Con

1
P
` P(p'! P(p'q)q).

Using P4, T+P(pP(p'q)^¬'q) ` P(pP(p'q)q)^P(p¬'q). Thus, from P5, T+P(pP(p'q)^
¬'q) ` P(pP(p'q)q)^P(pP(p¬'q)q). From P6 and P4, we conclude that T +P(pP(p'q)^
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¬'q) ` P(pP(p?q)q), and so T + ConP + Con
1
P
` ¬P(pP(p'q)^¬'q). By the assumption one

has that T + Con
1
P
` P(pP(p'q)! 'q).

In all, for all sentences ',

T + ConP + Con
1
P
` P(pP(p'q)$ 'q),

which goes against Corollary 2.3.1 for S := T + ConP + Con
1
P
. a

In the previous proof, the key-idea was that if T +ConP+Con1P ` P(p'q)_P(p¬'q), then
P(x) would be a truth-predicate in the sense of the Undefinability of Truth. This means
that we proved G1 using the Undefinability of Truth. This idea has already appeared in
the literature [100], but with a di↵erent use and a di↵erent purpose (it was used to prove
G1 avoiding diagonalization). It is important to observe that, in the previous section, G1
was obtained in a similar way, namely by means of the non-recursiveness of truth.

Definition 2.3.3. We say that T is a strongly-uniform theory of arithmetic if:

SU1: T is a consistent extension of EA;

SU2: There is a formula Term(x) in T that identifies all terms, i.e., T ` Term(ptq) if, and
only if, t is a term;

SU3: There is a function-symbol that represent successor, i.e., such that for all terms t,
T ` (ptq) = pt +1q;

SU4: There is a function-symbol
•
= that represent equality, i.e., such that for all terms t0

and t1, T `
•
= (pt0q,pt1q) = pt0 = t1q. We will write x

•
= y :=

•
= (x,y);

SU5: There is a function-symbol sub(x,y) such that, T ` sub(pt(x)q,pt0q) = pt(pt0q)q,
for all term t(x) and t0. We assume that if t(x) has no free-variables, then T `
sub(ptq,pt0q) = ptq;

SU6: T has a provability predicate P that satisfies the following properties:

PU1: T ` 8Term(x).8Term(y).8Term(z).P(x •
= x)^ (P(x •

= y)^ (P(y •
= z))! P(x

•
= z))^

(P(x
•
= y)! P(y

•
= x));

PU2: For all terms t, T ` P(pt = t +1q)! P(p?q);
PU3: For all terms t0 and t1, T ` P((sub(pt0q,pt1q))

•
=

sub((pt0q),pt1q)).

Finally, we present a generalization of Theorem 2.0.9.

Corollary 2.3.3 (Hilbert-Bernays Paradox). Let T be a strongly-uniform theory of arithmetic
(P the considered provability predicate for T ). Then, there is no term h(x) such that for all
closed terms t,

T + ConP ` P(ph(ptq) = tq).
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Proof. Take �(x),�0(x) := Term(x), R(x,y) := P(x
•
= y), ng(x) := (x), and sb(x,y) := sub(x,y).

Consider T +ConP . Condition PU1 corresponds to conditionGD1 from Theorem 2.3.1, the
Term-Diagonalization Lemma corresponds to conditionGD2, condition PU2 corresponds
to conditionsGD3, and condition PU3 corresponds to conditionGD4. Furthermore,GD5
follows from SU3 and GD6 follows from SU5. By Theorem 2.3.1, the result follows. a
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3
k-provability in PA

3.1 Introduction

k-provability is the notion of provability ‘`k steps’, i.e. the notion of being provable, in a
certain theory, with at most k steps. This notion has been studied for di↵erent theories
and with di↵erent purposes. In [73], [31], and [58] the decidability of this relation was
studied for several formalizations of Peano Arithmetic (PA). Kreisel’s conjecture—an open
problem in k-provability [18]—was studied in [73], [58], [32], [68], [74], [15], and [1]. We
recommend [72] for a detailed account of this and other notions of provability.

In [13], it was proved that k-provability is undecidable for the sequent calculus of
arithmetic with an infinite number of relation-symbols. Furthermore, in [31], this re-
lation was proved to be decidable for several formulations of PA where the universal
instantiation schema is replaced by other schemata. The usual universal instantiation
schema is:

Uni. Inst (8x.')! '
x

t
, where t is substitutable for x in '.

It is an open problemwhether k-provability for PAwith the usual instantiation schema
is decidable [31]. From [58], [31], and [72, p. 103] we know that the proof-skeleton
problem is undecidable for PA with the usual instantiation schema; by the proof-skeleton
problem we mean the problem of deciding if a given formula has a proof whose skeleton
(the list of axioms and rules that were used) is the considered one.

The work we present in this chapter was awarded the Amílcar Sernadas Logic Prize1

and was published in [85]. Here, we address the proof-skeleton problem and the decid-
ability of k-provability; we:

1
https://math.tecnico.ulisboa.pt/pacs/.
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CHAPTER 3. k-PROVABILITY IN PA

1. Characterize some proof-skeletons for which it is decidable whether a given formula
has a proof with the considered skeleton;

2. Characterize some values of k for which it is decidable whether a formula can be
proved in k steps.

These characterizations are natural ones—in the sense that they emerge from simple
generalization of concepts—and parameterized by unification algorithms (for a type of
systems that we are going to develop). Our approach is valid for several theories that
extend PA. We will consider theories of arithmetic formulated in a Hilbert-style systems
having the following logical axioms (see [28, p. 112] for further details):

L1. ('! ( ! µ))! (('!  )! ('! µ));

L2. '! ( ! ');

L3. (¬'! ¬ )! ( ! ');

L4. (8x.')! '
x

t
, where t is substitutable for x in ';

L5. 8x.('!  )! (8x.'!8x. );

L6. '!8x.', where x does not occur free in ';

L7. 8x.x = x;

L8. 8x.8y.8z.(x = y ^ y = z! x = z);

L9. 8x.8y.x = y! y = x;

L10. 8x0.8x1.8x2.8x3.(x0 = x1 ^ x2 = x3! x0 + x2 = x1 + x3);

L11. 8x.8y.(x = y! S(x) = S(y)).

We do not allow the occurrence of any other predicates besides ‘=’ (for instance, we
assume that one is not given a predicate ‘<’ for the usual relation < inN). Furthermore, we
consider the following two rules (the rule Gen can be removed from this axiomatization,
but we decided to keep it because it is useful in practise):

' '!  

 
MP

'

8x.'Gen

It is important to observe that these axioms are schemata in the sense that they can
be substituted for any formula and any variable which satisfy certain conditions. The
non-logical axioms of Robinson Arithmetic (Q) are:

Q1. 8x.8y.(S(x) = S(y)! x = y);

Q2. 8x.¬0 = S(x);
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Q3. 8x.x +0 = x;

Q4. 8x.8y.x + S(y) = S(x + y);

Q5. 8x.x ⇥ 0 = 0;

Q6. 8x.8y.x ⇥ S(y) = (x ⇥ y) + x;

Q7. 8x.(¬x = 0!9y.x = S(y)).

PA is obtained from Q by adding the induction schema:

PA1. 'y

0 ^8x.('
y

x ! '
y

S(x))!8x.'
y

x , where y is free in ' and x is substitutable for y in '.

Observe that we are considering the signature of the logic as only having the universal
quantifier, implication sign, and negation sign: whenever another connective appears, it
should be written using only implication and negation signs; for instance '^ := ¬('!
¬ ). Other options could have been made here.

3.2 The theory PA0

In this section, we develop a version of PA, namely PA0. To achieve that goal, we present
some useful results.

Theorem 3.2.1. The schema

Inst. 1: (8x.')! '
x

t
, where t is substitutable for x in '

has the same instances as the two following schemata when considered together:

Inst. 2: (8x.')! '
x

t
, where t is substitutable for x in ' and x does not occur in t;

Inst. 3: (8x.'y

x ) ! '
y

t
, where t is substitutable for y in ', x does not occur free in ', the

variable y does not occur free under the scope of a 8x quantifier in ', the variable y is
not the variable x, and y does not occur in t.

Proof. Let us analyze the following cases:

Inst. 2 =) Inst. 1: This is immediate, since all instances of Inst. 2 are directly instances
of Inst. 1.

Inst. 3 =) Inst. 1: Suppose that one is given µ := (8x.'y

x )! '
y

t
, where t is substitutable

for y in ', x does not occur free in ', the variable y does not occur free under the
scope of a 8x quantifier in ', the variable y is not the variable x, and y does not
occur in t. Take ⇠ := 'y

x . Consider the two following situations:
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y does not occur free in ': For this case, ⇠ = '
y

x = ' = '
y

t
. As x does not occur

free in ', we conclude that ⇠x
t
= ⇠ and t is substitutable for x in ', thus t is

substitutable for x in ⇠ . Consequently,

µ = ((8x.'y

x )! '
y

t
) = ((8x.⇠)! ⇠) = ((8x.⇠)! ⇠

x

t ),

so µ is an instance of Inst. 1.

y occurs free in ': Suppose, aiming a contradiction, that t is not substitutable for
x in ⇠ = 'y

x . Then, x occurs free in ⇠ and there is a variable z in t which is
captured by a quantifier 8z in ⇠x

t
. As x do not occur free in ' by hypothesis,

this means that there is a variable z in t which is captured by a quantifier
8z in 'y

t
; which contradicts the fact that t is substitutable for y in '. So, t is

substitutable for x in ⇠ . As the variable y does not occur free under the scope of
a 8x quantifier and x does not occur free in', we conclude that ⇠x

t
=

⇣
'
y

x

⌘x
t
= 'y

t
.

Hence,

µ = ((8x.'y

x )! '
y

t
) = ((8x.⇠)! ⇠

x

t ),

and so µ is an instance of Inst. 1.

Inst. 1 =) Inst. 2, Inst. 3: Consider µ0 := (8x.')! '
x

t
, where t is substitutable for x in

'. Consider the following cases:

x does not occur in t: In this case, µ0 is an immediate instance of Inst. 2.

x occurs in t: Take � := 'x
y , where y is a fresh variable not occurring in ' (not even

in the quantifiers of ') and in t. Clearly, the variable y does not occur free
under the scope of a 8x quantifier in �. As t is substitutable for x in ' and y

does not occur in ', it follows that t is substitutable for y in �. Furthermore, x
does not occur free in �. It is clear that �y

x = '. As y does not appear in ' (not
even in quantifiers of ') and all free occurrences of x in ' are being replaced
by y in �, we have that �y

t
=

⇣
'
x
y

⌘y
t
= 'x

t
. Thus,

((8x.�y

x )! �
y

t
) = ((8x.')! '

x

t ) = µ
0
,

and so µ
0 is an instance of Inst. 3.

The result follows by the previous case analysis. a

Theorem 3.2.2. The following schemata have the same instances:

Ind. 1: 'y

0 ^8x.('
y

x ! '
y

S(x))!8x.'
y

x , where y is free in ' and x is substitutable for y in ';

Ind. 2: 'y

0 ^8x.('
y

x ! '
y

S(x))!8x.'
y

x , where y is free in ', the variable x is not the variable
y, and x is substitutable for y in '.

Proof. We have the following cases to study:
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Ind. 2 =) Ind. 1: It is immediate, since the instances of Ind. 2 are directly instances of
Ind. 1.

Ind. 1 =) Ind. 2: Suppose that µ := ('y

0 ^ 8x.('
y

x ! '
y

S(x)) ! 8x.'
y

x ) is an instance of
Ind. 1. If x is not y, then it is immediately an instance of Ind. 2. So, suppose that
x is y in µ. Thus, µ = ('x

0 ^ 8x.(' ! '
x

S(x)) ! 8x.'). Take y a fresh variable not
occurring in ' (not even in quantifiers) and  := 'x

y . As x is free in ' and y does not
appear at all in ', it follows that y is free in  . As x is free in ', we conclude that x is
substitutable for y in  . Furthermore, as y does not occur at all in ',  y

x =
⇣
'
x
y

⌘y
x
= ',

 
y

0 =
⇣
'
x
y

⌘y
0
= 'x

0, and  
y

S(x) =
⇣
'
x
y

⌘y
S(x)

= 'x

S(x). Therefore, we have

µ = ('x

0 ^8x.('! '
x

S(x))!8x.') = ( y

0 ^8x.( 
y

x !  
y

S(x))!8x. 
y

x )

All the cases were considered. a

Now we are ready to define PA0.

Definition 3.2.1. Let PA0 be PA from before where the universal instantiation axiom is
replaced by the schemata Inst. 2 and Inst. 3, and where the induction axiom is replaced
by Ind. 2.

Theorem 3.2.3. The two following statements are equivalent:

1. PA `k steps ';

2. PA0 `k steps '.

Proof. From Theorems 3.2.1 and 3.2.2, we know that the axioms in PA0 that are a re-
placement of the axioms of PA have exactly the same instances. So, in a proof of PA an
occurrence of Inst. 1 can be replaced by an occurrence of Inst. 2 or Inst. 3 to obtain a
proof in PA0 exactly with the same formulas, in particular with the same length. The same
idea applies to substitutions of Ind. 1 in proofs of PA by Ind. 2 to obtain proofs in PA0.
Furthermore, Inst. 2 and Inst. 3 can be replaced by Inst. 1 in the same fashion, and Ind.
2 by Ind. 1. a

By the previous result, we know that the decidability of PA `k steps reduces to the
decidability of PA0 `k steps. We will consider the axioms Inst. 2 and Inst. 3, and Ind.
2—they have the nice syntactical feature that in the replacements one cannot have a
variable being substituted by a term where that very variable occurs. We are considering
the number of steps as being the number of rules that are being applied—here one could
also consider the number of proof lines, the results that we are going to present can be
adapted for that situation.
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3.3 Main results

We were inspired by Parikh systems (see, for instance, [31]) for the systems that we have
developed, but we use very similar terminology to the one used in [31] with very di↵erent
meanings (the reader should always have this in mind). The biggest di↵erence between
our approach and the approach followed in [31] is that we have developed a general
way to obtain the provable formulas via schemata and in the latter the authors’ focus in
schemata occurs mainly in the axioms (they do not extend that notion to the provable
formulas as we do). In that paper, it was developed a technique to study the decidability
of k-provability for some theories using unification. We develop a new technique that
depends on a di↵erent way to unify—we create a technique to unify some of the schemata
that generate the provable formulas.

3.3.1 Provable schemata

The general idea of our approach is to attach a meaning to the combinatorial nature of
general proof structures, namely to the di↵erent ways to combine, in a given number of
steps, the axioms of the considered theory. Let us see, as an example, the general structure
that corresponds to the following arrangement of the axioms: MP([L2],MP([L2], [L1])).
This means that one firstly applies MP to an L1 implication using an L2 axiom, and to the
result of that, which must be an implication, one applies MP using an axiom of the form
L2. Starting from the first application, to apply to the left side of ('! ( ! µ))! (('!
 )! ('! µ)) something of the form of '! ( ! '), one must have µ = '. Hence, the
application of the first MP yields something of the form (' !  )! (' ! '). Now, to
apply L2 to (' !  )! (' ! '), one needs  = ⇠ ! '. In this conditions, the general
shape/structure of MP([L2],MP([L2], [L1])) is '! '.

Clearly, any other way to arrange the axioms in the considered shape is a particular
case of '! '. Moreover, '! ' codifies, in a unique schema, all the ways to combine the
axioms in MP([L2],MP([L2], [L1])). A similar analysis could be carried out for (some of)
the other combinations of axioms, resulting in a finite list of schemata that generate, via
substitutions, all instances of the other schemata that are obtainable in a given number
of steps, k (this only works for some values of k due to undecidability issues). Hence, for
some values of k, there are finitely many provable schemata that give rise to the formulas
that are provable in k steps. It is important to observe that the previous idea does not
work for all proof-skeletons (see Theorem 5.1 from [58], and Theorem 14.1 from [72,
p.103]).

Now we move to formalize the previous ideas. Having in mind what was previously
observed, the general shape of a schema is nothing but F['0, . . . ,'n0

, t0, . . . , tn1 , v0, . . . , vn2]&C,
where '0, . . . ,'n0

stand for formula-variables, where t0, . . . , tn1 stand for term-variables,
and where v0, . . . , vn2 stand for variable-variables; F stands for the arrangement of the
logical symbols; and C stands for a condition on the variables, on the formulas, and on
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the terms. All the variables in the previous schema are exactly that, variables, they do
not stand for actual entities; for instance, the formula-variables do not stand for actual
formulas. Let us see two examples:

• ‘' ! ( ! ')’ is a schema, where F['0,'1] := '0 ! ('1 ! '0) only has formula-
variables, and where there are no further conditions;

• ‘'x

0^8y.('x
y ! '

x

S(y))!8y.'x
y , where y is free in ', the variable x is not the variable

y, and x is substitutable for y in '’ is a schema where F[',x] := '
x

0 ^ 8y.('x
y !

'
x

S(y))!8y.'x
y , and C :=‘y is free in ', the variable x is not the variable y, and x is

substitutable for y in '’.

Let us fix throughout the rest of the chapter: C0(',x) :=‘x is free in '’, C1(',x) :=‘x is
not free in '’, C2(', t,x) :=‘t is substitutable for x in '’, C3(t,x) :=‘x does not occur in t’,
and C4(x,y) :=‘the variable x is di↵erent from the variable y’, C5(',x,y) := ‘the variable
y does not occur free under the scope of a 8x quantifier in '’, C6(',x) := ‘x occurs in '’,
C7(',x) :=‘x does not occur free in '’, and C8(',x,y) :=‘there is a free occurrence of the
variable y in ' that does not occur under the scope of a 8x quantifier’. Observe that all
the previous conditions are decidable. By C0 we mean that all the occurrences of x in '
are free. We will assume that T is a (fixed) theory of arithmetic that extends the presented
version of PA0 by adding schemata that depend on formulas, terms, and variables, without
having any conditions on the schemata. We now move to define formally what a proof-
skeleton is.

Definition 3.3.1. We define inductively2 the notion of proof-skeleton:

Basis case: Ai is a proof-skeleton if Ai is the number3 of an axiom of T ;

Induction step: If S0 and S1 are proof-skeletons, then MP(S0,S1) and Gen(S0) are proof-
skeletons.

We say that a proof-skeleton Shas k steps if it has k applications of rules (k might be 0).

Now we define the notion of a schema.

Definition 3.3.2. We define inductively the notion of term-structure:

Basis case: Every variable-variable, every term-variable, and 0 are a term-structure.

Induction step: If r and s are term-structures, then S(r), r + s, r ⇥ s, and s
~x

~t
, where ~x are

variable-variables and ~t are term-structures, are also term-structures.

We define inductively the notion of formula-structure:

2Throughout our Thesis, we use the term ‘induction’ for the proof technique and to define objects like
sets; we reserve the term ‘recursion’ for the definition of functions.

3Here by ‘number’ we mean the syntactical entity.
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Basis case: Every formula-variable is a formula-structure. Furthermore, r = s is a formula-
structure, with r and s term-structures.

Induction step: If F andG are formula-structure, then the following are formula-structures:

• F! G,

• ¬F,
• 8v.F, where v is a variable-variable,

• (F)~v
~t
, where ~v are variable-variables, and ~t are term-structures.

We say that F is a sub-formula-structure of G if F is a formula-structure that occurs in G.
We say that A is an atom if A is a formula-variable, or if A = 'x0...x`

t0...t`
, where ' is either a

formula-variable or a formula-structure of the form r = s, with r and s term-structures.
We say that an expression of the form

F['0, . . . ,'n0
, t0, . . . , tn1 , v0, . . . , vn2]&

_

i2I
&
j2Ji
⇠k

0
j C

k
1
j

(Ai, tk2
j

, v
k
3
j

)

or of the form

F['0, . . . ,'n0
, t0, . . . , tn1 , v0, . . . , vn2]&?

is a schema, where I and Ji are sets of indices (possibly empty, in which case we omit the
conditions), F['0, . . . ,'n0

, t0, . . . , tn1 , v0, . . . , vn2] is a formula-structure, and Ai are atoms.
Here C

k
1
j

stand for a (syntactical) representation of the condition in the theory T previ-
ously mentioned (we also allow formula-structures to occur inside the conditions, but
this will be avoided using several conventions). We allow term-structures to occur inside
the conditions.

Every axiom of PA0 is a schema. Furthermore, every axiom of T is a schema.

Convention 3.3.1. In every occurrence of '~x
~s

or t~x
~s

in schemata, we do not allow the
variables that are being changed to occur in the replacing term. Furthermore, we do not
allow a variable to occur in a replacement being mapped to di↵erent terms, and we do
not allow repeated occurrences of the same change in the replacement (for instance tx x

s s ).

It is important to stress that schemata are syntactical objects, even the conditions in
them are syntactical (that have a semantical interpretation). The symbols ⇠,W, and& are
syntactical representations of the connectives in the meta-language (negation, disjunction,
and conjunction, respectively).

Convention 3.3.2. As ('!  )x
t
= 'x

t
!  

x

t
, (¬')x

t
= ¬'x

t
, and

(8y.')x
t
=

8>>><>>>:

8y.', x = y

8y.'x

t
, x 6= y,

hold for all formulas, we assume these identities for schemata. This means that in a
schema one can move all occurrences of (·)x

t
inside the formula-structure.
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With the conventions that we are going to present, we will extend the syntactical
equality (and we will continue to denote it simply by ‘=’). Sometimes to emphasize that
E0 = E1 syntactically we will say that ‘E0 is E1’ (we will also use it to express that E0 and
E1 are syntactically the same after some suitable substitution).

Convention 3.3.3. We assume the following identities:

• 'x0···xn
t0···tn = '

xf (0)···xf (n)
tf (0)···tf (n) , where f : {0, . . . ,n}! {0, . . . ,n} is a bijection (this feature is not

troublesome because we are interpreting the replacements as simultaneous replace-
ments that satisfy Convention 3.3.1).

• The usual properties of replacements, for example:

(x + S(s))x
t
= (t + S(sxt )).

• The usual identities for propositional (meta-)logic, for example:

– ⇠2n C = C, ⇠2n+1 C =⇠ C,

– C
W

C = C,

– ⇠ (C&C
0) = (⇠ C)

W
(⇠ C

0) (where C and C
0 are conditions), and so on.

• For C0:

– C0(¬F,x) = C0(F,x),

– C0(F! G,x) = C0(F,x)&C0(G,x),

– C0(8y.F,x) = C0(F,x)&C4(x,y).

• C1(F,x) =⇠ C0(F,x).

• For C2:

– C2(¬F, t,x) = C2(F, t,x),

– C2(F! G,t,x) = C2(F, t,x)&C2(G,t,x),

– C2(8y.F, t,x) = C7(8y.F,x)
W
(C3(t,y)&C2(F, t,x)).

• For C5:

– C5(¬F,x,y) = C5(F,x,y),

– C5(F! G,x) = C5(F,x,y)&C5(G,x,y),

– C5(8z.F,x,y) = (C4(x,z)&C5(F,x,y))
W
(⇠ C4(x,z)&

C7(F,y)).

• C7(8y.F,x) =⇠ C4(x,y)
W

C7(F,x).
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• For C8:

– C8(¬F,x,y) = C8(F,x,y),

– C8(F! G,x,y) = C8(F,x,y)
W

C8(G,x,y),

– C8(8z.F,x,y) = (C4(x,z)&C8(F,x,y)).

• Similarly for the other conditions.

It is important to observe that in all the conditions one can arrange the formula-
structures in such a way that inside the conditions one has only atoms (this will follow
from the conventions that we are going to make, when considered together).

Convention 3.3.4. Whenever we are considering, at the same time, di↵erent schemata, we
implicitly assume that they do not have common variables (this is just a useful technical
feature that does not have any conceptual reason).

Definition 3.3.3. A substitution � is a function that assigns: formula-variables to formula-
structures, term-variables to term-structures, and variable-variables to variable-variables.

It is important to observe that if one applies a substitution � to a schema one might
be increasing the number of term-variables and variable-variables.

Definition 3.3.4. We define inductively the provable schemata by:

Basis case: Every schema that is an axiom is a provable schema;

Induction step: If

• F['0
0 , . . . ,'

0
n0
, t
0
0 , . . . , t

0
n1
, v

0
0 , . . . , v

0
n2
]&

W
i2I0 &j2J0

i

⇠k
0,0
j C

k
0,1
j

(A0
i
, t
k
0,2
j

, v
k
0,3
j

), and

• G['1
0 , . . . ,'

1
n3
, t
1
0 , . . . , t

1
n4
, v

1
0 , . . . , v

1
n5
]!H['2

0 , . . . ,'
2
n6
, t
2
0 , . . . , t

2
n7
, v

2
0 , . . . , v

2
n8
]

&
W

i2I1 &j2J1
i

⇠k
1,0
j C

k
1,1
j

(A1
i
, t
k
1,2
j

, v
k
1,3
j

)

are provable schemata and there is � such that

F[�('0
0), . . . ,�('

0
n0
),�(t00), . . . ,�(t

0
n1
),�(v00), . . . ,�(v

0
n2
)] =

G[�('1
0), . . . ,�('

1
n3
),�(t10), . . . , (t

1
n4
),�(v10), . . . ,�(v

1
n5
)],

one says that

H[�('2
0), . . . ,�('

2
n6
),�(t20), . . . ,�(t

2
n7
),�(v20), . . . ,�(v

2
n8
)]&

_

i2I0
&
j2J0

i

⇠k
0,0
j C

k
0,1
j

(�(A0
i
),�(t

k
0,2
j

),�(v
k
0,3
j

))&

_

i2I1
&
j2J1

i

⇠k
1,0
j C

k
1,1
j

(�(A1
i
),�(t

k
1,2
j

),�(v
k
1,3
j

))
⇣&C

⌘
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is a provable schema; furthermore,

8v.F['0
0 , . . . ,'

0
n0
, t
0
0 , . . . , t

0
n1
, v

0
0 , . . . , v

0
n2
]&

_

i2I0
&
j2J0

i

⇠k
0,0
j C

k
0,1
j

(A0
i
, t
k
0,2
j

, v
k
0,3
j

)

⇣&C

⌘

is also a provable schema. C is a possibly added condition that arises from conven-
tions, for instance from Convention 3.3.2 by adding C4 conditions.

A provable schema S is provable in k steps if in the construction of S as a provable schema
were used, at most, k steps (we do not count the application of conventions as steps nor
the axiom case as a step). A provable schema that is an axiom has skeleton equal to the
number of the axiom; if a provable schema S has skeleton S, then the corresponding
provable schema obtained using the universal rule, 8v.S , has skeleton Gen(S); if S0 and
S1 are provable schemata that have skeletons S0 and S1, respectively, and S is a schemata
obtained using the MP construction from S0 and S1, then S has skeleton MP(S0,S1).

Convention 3.3.5. The equality in the previous definition should be read as follows: there
is a substitution � such that, after applying the conventions to both formula-structures
considered in the definition, one gets syntactical equality. For each way of applying
the conventions and for a fixed substitution one might get new provable schemata (for
each way one gets a new provable schema). Thus, a schema is provable if there are
a substitution and several applications of the conventions that make the conditions of
the definition (in particular the equality) hold. In practice, Convention 3.3.2 will be
applied in the following way: in a schema, either one has the same variable occurring
in a quantifier and in a replacement, and then one eliminates the replacement; or one
proceeds as the convention suggests and one adds a condition C4 to di↵erentiate the
variables. This is assumed, for instance, in the provable schemata by considering both
situations after the application of � (this information then goes to the condition C). We
will make the same assumption for the other conventions that we are going to establish.
Whenever we consider a schema in the previous conditions, we are, in fact, considering
all the schemata that are obtained using the previous procedure. In practice, we also
allow that in the previous definition more conditions are added. Furthermore, we will
use the notion of the previous definition where � represents the application of several
substitutions and conventions.

We now pause to give some examples. Clearly, ('! ( ! µ))! (('!  )! ('! µ))
is a provable schema, since it is an axiom. We also have that (' !  )! (' ! ') is a
provable schema, since it can be obtained from the schemata (' ! ( ! µ))! ((' !
 )! (' ! µ)) and ' ! ( ! ') (by considering the substitution such that �(') := ',
�( ) :=  , and �(µ) := '). Moreover, for the same reason, (' ! ') ! (' ! ') (by
considering the substitution such that �(') := ', �( ) := ', and �(µ) := ') is a provable
schema. It is a good exercise to check that '! ' is a provable schema.
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Definition 3.3.5. We say that ⌃ is a concrete-substitution for the schema

F['0, . . . ,'n0
, t0, . . . , tn1 , v0, . . . , vn2]&

_

i2I
&
j2Ji
⇠k

0
j C

k
1
j

(Ai, tk2
j

, v
k
3
j

)

if ⌃ assigns formula-variables to actual formulas, term-variables to actual terms, and
variable-variables to actual variables, in such a way that

_

i2I
&
j2Ji
⇠k

0
j C

k
1
j

(⌃(Ai ),⌃(tk2
j

),⌃(v
k
3
j

))

is a true condition and such that, in any occurrence ofGy0···yn
s0···sn in F (withG a term-structure

or a formula-structure), no ⌃(yi ) occurs in any ⌃(sj ), and there are no ⌃(yi ) with di↵erent
attributions. It also needs to be the case that in every occurrence of Gy0···yn

s0···sn in the schema,
each ⌃(si ) is substitutable for ⌃(yi ) in ⌃(G) and that no ⌃(yi ) is ⌃(yj ) with i 6= j (there are
no repetitions of the same change). For a schema S , we use the notation ⌃(S) to denote
the result of performing the substitution ⌃ in the schema S whenever the substitution
satisfies the definition.

To respect the previous definition, when one applies Convention 3.3.2, one should
add the condition C7(8y.',x)

W
C3(t,y) in the context of provable schemata.

Convention 3.3.6. We assume that
⇣
t
~x

~s

⌘y
r
= t

~x y

~s r
, and the analogue identity for formula-

structures, if there are no other occurrences of the basis of the replacement, t, in the
schema that is being considered (here we are assuming that no ~x is a y, the suitable
changes should be applied for the other case and the respective conditions should be
added in the presence of provable schemata). This o↵ers no problem with the concrete-
substitution interpretation because if one has a concrete-substitution that satisfies the
left-hand-side of the equation, one can construct a concrete-substitution that satisfies the
right-hand-side and vice-versa. For example, if we had (txs )

y

r with ⌃(x) := x0, ⌃(s) := S(x1),
⌃(y) := x1, ⌃(r) := x2, then by considering a concrete-substitution⌃0 such that⌃0(t) := ⌃(t),
⌃0(x) := x0, ⌃0(y) := x1, ⌃0(s) := S(x2), and ⌃0(r) := x2, we would get

⌃
⇣
(txs )

y

r

⌘
=

✓
⌃(t)⌃(x)⌃(s)

◆⌃(y)

⌃(r)
=

⇣
⌃(t)x0

S(x1)

⌘x1
x2
= ⌃(t)x0 x1

S(x2) x2

= ⌃0(t)x0 x1
S(x2) x2

= ⌃0(t)⌃
0(x) ⌃0(y)
⌃0(s) ⌃0(r) = ⌃

0(tx y

s r ).

This means that if there is a concrete-substitution of one member of the equality, then
there is a concrete-substitution for the other member. This identity will hold only if none
of the ~x occurs in r (one should add the suitable condition to express this fact).

Observe that one could also have in a schema, besides the considered term-structure,
the term-structures (txz )

z

s
and t

y

r . In that type of situations, we take x
0 a totally fresh

variable (i.e. not occurring at all) and the first term-structure is replaced by t
x
0
z

s s and the
second is replaced by t

y x
0

r x (the same for formula-structures), assuming that z is not x (one
should add the suitable conditions for that).
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More generally,
⇣
t
~x

~r

⌘~y
~s
is replaced by (t0)

~x
0
~y

~r
~y

~s
~s
, with ~x0 all fresh and t

0, and in the other

occurrences of t where ~x are not being changed (one should do a case analysis for this
using conditions C4 and one should add the fact that, for the new t, x does not occur in t),
one places (t0)

~x
0
~x

and one proceeds in a similar fashion for the other cases; in the previous
situation we need to assume that none ~x occurs in ~y , one should also consider the case
where some of the ~x are ~y and add the suitable conditions in the presence of provable
schemata, which simplifies the analysis.

We assume this convention also for formula-structures. More precisely,
⇣
'
~x

~r

⌘~y
~s

is

replaced by ('0)
~x
0
~y

~r
~y

~s
~s
, with ~x0 all fresh and '0 fresh, and in the other occurrences of '

where ~x are not being changed, one places ('0)
~x
0
~x
; for the previous replacement to work

we need, in the context of provable schemata, to add to the conditions: ~x0 is free in ',
~x is substitutable for ~x0 in ', ~r is substitutable for ~x0 in ', and ~x is not free in ' (the
justification for all this procedure is that one needs these conditions for the previous
reasoning for terms to be applied for formulas, namely to be able, in the presence of a
concrete-substitutions, to go back from the image of the replaced formula-structure to the
image of the initial one). This means that, without loss of generality, we will assume that
in the schemata all these reductions were already applied—in practice, this means that
several case analysis ought to be done. As our interpretation of the schemata is obtained
via concrete-substitutions, we do not have a problem, since everything fits the definition.

Convention 3.3.7. In every occurrence of xy
t
in a provable schemata, one should consider

the cases where x is the same as y, that entails xy
t
= t, and the opposite case, that entails

x
y

t
= x. These situations will give rise to several provable schemata that are originated

from a single syntactical expression. For each situation, we should add accordingly the
conditions C4 or ⇠ C4 (c.f. Convention 3.3.5).

Lemma 3.3.1. Consider formulas ' and  , and schemata

• S0 := F['0
0 , . . . ,'

0
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• S1 := G['1
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If there are concrete-substitutions ⌃0 and ⌃1 such that ⌃0(S0) = ' and ⌃1(S1) = '!  , then
there are a substitution � such that

F[�('0
0), . . . ,�('

0
n0
),�(t00), . . . ,�(t

0
n1
),�(v00), . . . ,�(v

0
n2
)] =
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0), . . . ,�('

1
n3
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1
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1
n5
)]
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and a concrete-substitution ⌃ such that ⌃(S2) =  , where

S2 =H[�('2
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Proof. By hypothesis, ⌃0(S0) = ' and ⌃1(S1) = '!  . This means that there are concrete
(and not variable) formulas '0

0 , . . . ,'
0
n0
,'

1
0 , . . . ,'

1
n2
, concrete terms t00 , . . . , t
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n1
, t
1
0 , . . . , t
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concrete variables v00 , . . . , v
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1
0 , . . . , v

1
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obeying the semantical translation of the syntacti-
cal conditions such that

' =F['0
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Hence, the outer layout of implication signs, negation signs, universal quantifier signs,
and parenthesis in S0 and in S1 can be made the same. For instance, the formula-
structures ' ! ( ! ') and ' ! ((' ! ') ! ') can have the same outer layout of
signs, but '! ' and ('! ')! ' cannot—we use this expression to say that they have
a common outer structure of parenthesis, implication signs, negation signs, and universal
quantifier sings (we mention it as simply the layout). A layout is nothing but a sequence
of symbols: parenthesis, implication signs, negation sings, and universal quantifier signs.
For example, (8())! (¬()! ()) is a layout. We will say that a layout L is a sub-layout of
L
0 if L is a subsequence of L0. We call entry to the content of a layout inside implications

such that they do not contain further implications.
It is not hard to see that there are substitution �0 and �1, and concrete-substitutions

⌃00 and ⌃01, such that the layout of �0(F) and �1(G) is the same as the layout of ' and
⌃00(�0(S0)) = ' and ⌃01(�0(S1)) = '!  . It is enough for the procedure that we are going
to describe that the layout is the same with possible exception of the entries in it because
the entries are going to be accounted in the procedure per se. For example, consider the
layouts (¬8(¬())) ! (() ! (¬())) and () ! (() ! (¬())); although they are not the same,
for the purposes of the procedure that we are going to develop the di↵erences do not
matter because they occur only at the level of the entries (this will be accounted for in the
procedure); furthermore, when we are considering entries we always consider the biggest
one, for instance, in the first layout, although (), ¬(), 8(¬()), and ¬8(¬()) are all entries
of the layout that correspond to the same position, we will consider the biggest one, i.e.
¬8(¬()). In all, without loss of generality, we may assume that F and G have the same
layout. We assume that the changes of Convention 3.3.6 were already made in such a
way that one does not have compositions of replacements (from the information of the
concrete-substitutions one can find the correct way to apply the convention). Using the
concrete-substitutions, one can find the correct way to apply the Convention 3.3.2 and
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add that information to a condition C, composed of several C4 conditions. After this, one
can still find concrete-substitutions such that ⌃00(�0(S0)) = ' and ⌃01(�0(S1)) = '!  .

We do the following to construct a substitution � and a concrete-substitution ⌃ (we
are implicitly considering Convention 3.3.4 and all the other conventions):

1. If x is a variable-variable that is mapped to ⌃i(x), then x is assigned to a new fresh-
variable, �(x), and ⌃(�(x)) := ⌃i(x). At this stage, one should also identify the variables
that are mapped to the same concrete variables and distinguish the variables that are
mapped to di↵erent variables using conditions C4 and ⇠ C4.

2. One proceeds in a similar way with the term-variables.

3. Starting from the first entry of the (common) layout, if the content of any of the entries
is a formula-variable, then one assigns that formula-variable to the content of the other
entry andmoves to the next entry (in the endwemight need to make some adjustments
to this step).

4. Suppose now that the contents of both entries are not formula-variables.

4.1. Suppose that the contents are X0
0 · · ·X0

`0
('i )

v
0
0 ···v0n

t
0
0 ···t0n

, in S0, and

X
1
0 · · ·X1

`1
('k)

v
1
0 ···v1m

t
1
0 ···t1m

, in S1, where 'i and 'j are formula-variables (here X
i

0 · · ·Xi

`i

are arrays of quantifiers and negation symbols).

4.1.1. It might be needed to make a substitution in order to `0 = `1 (for the case
where one has all the layout equal with possible exception of the entries in
it). If `0 < `1, this is achieved by �('i ) := X

1
`0+1
· · ·X1

`1
'
0, with '0 fresh (it is

possible that it is necessary to make adjustments to the variables occurring
in the quantifiers so that none of them is v00 · · ·v0n and to add the suitable
conditions). Using � , one unifies the variables occurring in the same place
in the quantifiers (their value is already fixed by stage 1).

4.1.2. One then assigns for each component in the entry the corresponding image
through the concrete-substitution, with the di↵erence that the occurrences
of actual variables in the formulas are replaced by occurrences of variable-
variables. One does the same for the variables and term-structures in the
replacements.

4.1.3. Define the concrete-substitution accordingly.

4.1.4. Move to the next entry.

4.2. Suppose that the contents are X0
0 · · ·X0

`0
(r0 = s0)

v
0
0 ···v0n

t
0
0 ···t0n

, in S0, and

X
1
0 · · ·X1

`1
(r1 = s1)

v
1
0 ···v1m

t
1
0 ···t1m

, in S1, where r0, r1, s0, s1 are term-structures.

4.2.1. One proceeds as in 4.1 for the quantifier variables.
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CHAPTER 3. k-PROVABILITY IN PA

4.2.2. We can perform substitutions to both entries in such a way that they be-
come exactly equal to the content of the actual formula, but with the dif-
ference that actual variables in the formula are represented by variable-
variables (the same idea that was applied before). For example, if the
contents are x + t = y and t

0 = t
00, and they are both mapped using the

concrete-substitutions to x+(z+S(0)) = 0, then one considers �(t) := z+S(0),
with z a variable-variable, �(t0) := x + (z + S(0)), and �(t00) := 0.

4.2.3. One does the suitable adaptions for the replacements. For instance, if the
content of an entry is txs = S(x) + 0 and the concrete-substitution is defined
for the entry by ⌃i(t) := ⌃(x)⇥(0+x0) and ⌃i(s) := x3⇥S(0); then one defines
for this entry �(t) := �(x)⇥ (0 + y), and �(s) := z ⇥ S(0), entailing that

�(txs = S(x) + 0) =
✓
�(t)�(x)

�(s) = S(�(x)) + 0
◆

= ((z ⇥ S(0))⇥ (0 + y) = S(�(x)) + 0) .

Observe that one might need to add several C4 conditions.

4.2.4. Define accordingly the concrete-substitution for this situation by assigning
the variable-variables to the corresponding concrete variables.

4.2.5. One can perform substitutions in such a way that the term-structures that
appear are equal to their image through the concrete substitution where the
occurrence of variables in the actual formula is replaced by an occurrence
of variable-variables in the term-structures, as described before (all this
can be done because we have the guarantee of the existence of the concrete-
substitutions).

4.2.6. Define the concrete-substitution for this case by assigning the variable-
variables to the actual variables that they represent accordingly.

4.2.7. With the previous construction, in particular we have

�((r0 = s0)
v
0
0 ···v0n

t
0
0 ···t0n

) = �((r1 = s1)
v
1
0 ···v1m

t
1
0 ···t1m

).

4.2.8. If any variable-variable or term-variable is already assigned, make the suit-
able adaptations (this is always possible and reduces to a case analysis).

4.2.9. Move to the next entry.

4.3. If the content of one entry is X0
0 · · ·X0

`0
(r0 = s0)

v
0
0 ···v0n

t
0
0 ···t0n

and the content of the other

entry is X1
0 · · ·X1

`1
('k)

v
1
0 ···v1m

t
1
0 ···t1m

, one proceeds in a similar way by attributing, via � ,
the formula-variable 'k in such a way that in the end of the substitution one is
left with a version of the actual formula where variables are replaced by variable-
variables.

4.4. Move to the next entry.
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5. Make the suitable changes to the variables in order to have

⌃(H[�('2
0), . . . ,�('

2
n6
),�(t20), . . . ,�(t

2
n7
),�(v20), . . . ,�(v

2
n8
)]) =  .

It is not hard to see that the constructed concrete-substitution obeys the conditions of the
considered schemata and the added ones (while applying the conventions in a suitable
way). a

We could have presented a shorter proof of the previous results, but we decided to
exhibit this one because it contains important ideas that are going to be used in several
contexts. We can now prove that, using concrete-substitutions, k-provability of formulas
is, in a sense, the same as k-provability of schemata.

Theorem 3.3.1. The two following statements are equivalent:

C1: T `k steps ';

C2: There are S a provable schema in k steps and a concrete-substitution ⌃ such that ⌃(S) = '.

Proof. By definition of provable schema in k steps, we have that C2 implies C1 (this can
be more formally proved by induction on k).

Let us prove that C1 implies C2 by induction on k, the number of steps. Clearly, if '
is an axiom, then there are an axiom schema S and a concrete-substitution ⌃ such that
⌃(S) = '. Suppose, by induction hypothesis, that the result holds for k. Furthermore,
assume that T `k +1 steps '. In the last steps of a proof of ' we either apply the rule MP
or the rule Gen:

MP In this case, there is a formula  such that T `k0 steps  ! ' and T `k1 steps  , with
k = k0 + k1. By induction hypothesis, there are schemata satisfying the conditions
of Lemma 3.3.1. By the lemma, it follows that there is a provable schema H and a
concrete-substitution ⌃ such that ⌃(H) = '. As each of the schemata used in the
lemma is, by induction hypothesis, provable in k0 and k1 steps (respectively), it
follows that H is a schema provable in k +1 steps.

Gen In this case, ' is of the form 8x. . By hypothesis, T `k steps  . So, by induction
hypothesis, there are a provable schema in k steps, H , and a concrete-substitution
⌃ such that ⌃(H) =  . Consider the provable schema in k + 1 steps obtained from
H via the universal schema from Definition 3.3.4, let us call it H 0. Clearly, one can
make the suitable changes in such a way that ⌃(H 0) = 8x. = '.

The result follows by induction. a

Lemma 3.3.2. Consider a formula ', and schemata S0 and S1. Suppose that there are a
concrete-substitution ⌃ and a substitution � (that might include the application of several
substitutions and conventions) such that ⌃(S0) = ' and �(S1) = S0. Then, there is a concrete-
substitution ⌃0 such that ⌃0(S1) = '.
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CHAPTER 3. k-PROVABILITY IN PA

Proof. It is not hard to see that this follows from the considered definitions and from the
fact that all the conventions are compatible with the concrete-substitution interpretation.

a

3.3.2 Decidability of schemata

The next result has a similar content to Proposition 2.2 from [31].

Lemma 3.3.3. Given a condition of the form&i2I ⇠kiCk
1
j

(Ai, ti ,vi ), one can computationally
decide if there is a concrete substitution ⌃ such that

⌃

0
BBBBB@&

i2I
⇠kiC

k
1
j

(Ai, ti ,vi )

1
CCCCCA =&

i2I
⇠kiC

k
1
j

(⌃(Ai ),⌃(ti ),⌃(vi ))

is true; furthermore, witnesses can be found in a�rmative case. The result still holds if the
image of certain meta-variables are a priori fixed under a concrete-substitution.

Proof. The following idea is a procedure for the case where all the atoms that are not
fixed are formula-variables and where the term-variables that are not fixed occur without
replacements:

1. Start by considering enough variables to satisfy the occurrences of the conditions C4

and ⇠ C4.

2. Then, consider every formula as being equal to 0 = 0 and every term as being equal to
0.

3. After that, focus on C0 conditions. For every occurrence of C0(',x), make the attribu-
tion ' := (' ^ x = x) (if x is not yet free in '). Proceed in a similar way to ⇠ C7 (for
this condition we just need one free occurrence). For the occurrences of C1(',x) make
' := (' ^8x.x = x), in particular if ⇠ C7(',x) and also C1(',x), then attribute instead
' := (' ^ x = x)^ (8x.x = x).

4. Similarly for ⇠ C3, for every occurrence of ⇠ C3(t,x), consider t := (t + x).

5. Each time ⇠ C2(', t,x) occurs, (one should always compare what one is doing here
with the C5 and C2 conditions for the same formula-variables and variable-variables)
consider y a fresh variable, and attribute t := (t + y) and ' := (' ^8y.x = 0).

6. For each occurrence of ⇠ C5(',x,y), take ' := (' ^8x.y = 0). For C8(',x,y) we might
need to consider ' := ('^y = 0), in particular if ⇠ C5(',x,y) and C8(',x,y) occur, then
attribute ' := ((' ^8x.y = 0)^ y = 0). If ⇠ C8(',x,y) occurs, one should consider two
cases:

6.1. y does not occur free in ', i.e. C7(', y);
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6.2. Or ⇠ C7(', y) and in all free occurrences of y in ' they occur under the scope of a
8x quantifier. For this situation one acts in a similar way to the one described for
⇠ C5(',x,y) in all free occurrences of y (one places 8x in all free occurrences of y
in ').

7. Now test, for the considered attributions, if the occurrences of C0, C1, C2, C3, C5,
⇠ C6, C7, C8, and ⇠ C8 are satisfied. In negative case (one should consider all possible
situations), reject.

8. If C6(',x) is in the expression, test if the condition is already satisfied for the consid-
ered attributions. If not, then take ' := (' ^8x.x = 0) and test the conditions again.

If any variable, term, or formula is already fixed, the previous analysis remain valid
(some adaptations are needed, for instance in the beginning of the algorithm)—this sim-
plifies the algorithm to a case analysis. Furthermore, it is not hard to adapt it for replace-
ments and for more complex term-structures (see the identities bellow). Suppose now
that we have atoms of the form (r = s)~x

~t
. Then, we do the following:

1. We start by listing all the possible ways to apply the ~x to r = s, i.e. all the ways to apply
the replacements (including the way in which the variables ~x do not occur in r = s).
Each possibility will give rise to a separate analysis.

2. We proceed as in step 1 until no further replacements are applicable to term-structures.

3. In the previous step, one is left with several occurrences of t~y
~t
0 .

4. One proceeds in a way similar to the previous algorithm (if possible, i.e. if no contra-
diction was reached). Observe that such an analysis is simplified, since, for instance,
being free in the considered formula reduces to occurring in the formula (because
there are no quantifiers).

One can also adapt accordingly the idea of the initial procedure. One should also have in
mind the following identities concerning t

x
s :

• For C2, with z a totally fresh variable,

C2(', t
y

s ,x) =
⇣
C3(t,y)&C2(', t,x)

⌘_⇣
⇠ C3(t,y)&C2(', s,x)&

C2(', t
y

z ,x)
⌘
.

• For ⇠ C3,

⇠ C3(t
y

s ,x) =
⇣
C3(t,y)& ⇠ C3(t,x)

⌘_⇣
⇠ C3(t,y)&C4(x,y)&⇣

⇠ C3(t,x)
_
⇠ C3(s,x)

⌘⌘
.
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The case where we have atoms of the form '
~x

~t
is a particular case of the previous analysis

when one has in mind the following identities (that can be extended for more complex
replacements):

• For C0,

C0('
y

t
,x) =

⇣
C7(', y)&C0(',x)

⌘_⇣
⇠ C7(', y)&C2(', t,y)&⇣⇣

C4(x,y)&C0(',x)&C3(t,x)
⌘_

⇣
C4(x,y)&C0(',x)& ⇠ C3(t,x)&C5(',x,y)

⌘⌘⌘
.

• For C2,

C2('
y

s , t,x) =
⇣
C7(', y)&C2(', t,x)

⌘_⇣
⇠ C7(', y)&C2(', s,y)

&⇣
⇠ C4(x,y)

_⇣
C4(x,y)&C3(s,x)&C2(', t,x)

⌘

_⇣
C4(x,y)& ⇠ C3(s,x)&C2(', t,x)&C2(', t,y)

⌘⌘⌘
.

• For C5,

C5('x

s , z,y) =
⇣
C7(',x)&C5(', z,y)

⌘_⇣
⇠ C7(',x)&C2(', s,x)

&⇣
⇠ C4(x,y)

_⇣
C4(x,y)&C3(s,y)&C5(', z,y)

⌘

_⇣
C4(x,y)& ⇠ C3(s,y)&C5(', z,y)&C5(', z,x)

⌘⌘⌘
.

• For ⇠ C7,

⇠ C7('
y

t
,x) =

⇣
C7(', y)& ⇠ C7(',x)

⌘_⇣
⇠ C7(', y)&C2(', t,y)

&⇣
C4(x,y)&⇣

⇠ C7(',x)
_⇣
⇠ C3(t,x)&C8(',x,y)

⌘⌘⌘⌘
.

• For C8,

C8('x

s , z,y) =
⇣
C7(',x)&C8(', z,y)

⌘_⇣
⇠ C7(',x)&C2(', s,x)

&⇣
C4(x,y)&C3(s,y)&C8(', z,y)

⌘

_⇣
C4(x,y)& ⇠ C3(s,y)&⇣

C8(', z,y)
_

C8(', z,x)
⌘⌘⌘

.

The result follows by this observation and the previous analysis (and by a version of
disjunctive normal form for meta-connectives). a

Theorem 3.3.2. Given a schema S and a formula ', it is decidable whether there is a concrete-
substitution ⌃ such that ⌃(S) = '.

Proof. Consider ' a formula and S a schema to which all the conventions were already
applied. If the condition in S is a priori false, i.e. if using the rules of Convention 3.3.3
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one can obtain ?, then there is no concrete-substitution. Suppose now that S is of the
form

F['0, . . . ,'n0
, t0, . . . , tn1 , v0, . . . , vn2]&

_

i2I
&
j2Ji
⇠k

0
j C

k
1
j

(Ai, tk2
j

, v
k
3
j

),

where the condition is not a priori false. It is not hard to see that one can computationally
decide whether there is a substitution � such that �(F) and ' have the same layout (the
structure of parenthesis, implication signs, negation signs, and universal quantifier signs
described before). The idea is the following:

1. If F and ' have di↵erent types, then reject (by di↵erent types we mean that, for in-
stance, one is a negation and the other is an implication).

2. If they have the same type, then one goes to the layout to the left of both outermost
implication signs.

3. If the layout is the same, then one goes to the right and does the samemove throughout
the process.

4. If one reaches an incompatibility—for example one implication sign versus one nega-
tion sign or universal quantification sign—one rejects.

5. One does the same for negations and universal quantifications.

6. Using attributions to the formula-variables, one locally matches the layout of '.

7. One proceeds by going to the inside of the respective layouts until one reaches either
a rejection or an equal layout (this procedure must eventually stop because the layout
of the formula, just like the layout of a formula-structure, is finite).

In this briefly described way, one is not creating unnecessary changes in F, it is minimal in
that sense. If F cannot be changed to have the same layout as ', then there is no concrete-
substitution (all this is decidable). Suppose that there is such a substitution � that makes
the layout the same. Consider � in the mentioned minimal conditions, F 0 := �(F), and
S
0 := �(S). Assume that Convention 3.3.6 was already applied to the schema, as well as

Convention 3.3.2 (this will yield a finite number of schemata to which one should do the
analysis that follows). Having in mind that F 0 and ' have the same layout, it is decidable
whether there is ⌃ such that ⌃(F 0) = '. The idea is the following:

1. Just like what was done in 4 of the proof of Lemma 3.3.1, let us consider all the entries
in the layout of ' (that is the same layout of F 0).

2. Now, consider the finite list of variables occurring in ' under the scope of universal
quantifiers and the finite list of terms occurring in '.

3. One checks if there is any incompatibility between the array of quantifiers and nega-
tion signs of each entry of F 0 and of '.
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4. If there is, one rejects.

5. Otherwise, one defines ⌃ for the variable-variables occurring in the quantifiers accord-
ingly.

6. Starting from the first entry and going through all entries, one takes for each en-
try (where the corresponding entry in the formula-structure has a replacement) the
respective formula where the occurrences of some terms are replaced by fresh vari-
ables—ones should analyze all possibilities. Then, one checks if it is possible to assign
formulas, terms, and variables to the entries of F 0 in such a way that one obtains ' and
they satisfy the (decidable) condition of the schema F

0. One does this for all entries.
For single occurrences of term-variables without replacements, one simply assigns the
corresponding term that occurs in the actual term.

7. More precisely, one tests all possible substitutions by considering the formulas and the
terms where the occurrences of some terms are replaced by fresh variables (one should
vanish over all possibilities), one sees what the substituting term should look like, and
one tests all the (finite number of) possibilities by making the fresh variables equal
to some of the variables of the considered replacement. For each test one sees if the
conditions of the schema are satisfied. For example, if one has the formula (x+0)+ z =
y in the actual formula and the corresponding formula-structure (t0)

x0
s0

= x1 in the
schema, then one should assign x1 to the variable y and, as in t0 we are considering
one replacement, one should consider the following possibilities for t0:

• t0 as being x0, with s0 being (x +0) + z;

• t0 as being (x +0) + x0, where s0 is z;

• t0 as being x0 + z, where s0 is x +0;

• t0 as being (x0 + 0) + z, with s0 being x;

• t0 as being (x + x0) + z, with s0 being 0;

• t0 as being (x +0) + z with x0 not occurring in t0, where x0 and s0 are “arbitrary”
in what t0 is concerned; in practise, this means that either they are assigned in
the next entries, or they are to be considered as not assigned, which means that
one has just to further study them if they appear in the conditions—see the proof
of Lemma 3.3.3 for a more detailed account.

More generally, consider the case where a term-structure in the schema needs to be
equal, under a concrete-substitution, to a certain term. Then, one needs to satisfy an
equality similar to

⌃(((t0)
~x0
~s0
+S(t1))⇥ t2) =
((S(x + y) + S(S(0))) + S(S(0) + (x ⇥ z)))⇥ ((x ⇥ y) + 0),
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i.e.
⇣
⌃(t0)

⌃(~x0 )
⌃(~s0 )

+S(⌃(t1))
⌘
⇥⌃(t2) =

((S(x + y) + S(S(0))) + S(S(0) + (x ⇥ z)))⇥ ((x ⇥ y) + 0).

This entails that
8>>>>>><>>>>>>:

⌃(t0)
⌃(~x0 )
⌃(~s0 )

= (S(x + y) + S(S(0)))

S(⌃(t1)) = S(S(0) + (x ⇥ z))
⌃(t2) = ((x ⇥ y) + 0)

Thus, the image of t2 under the concrete-substitution that one wants to construct
is fixed, as well as the image of t1 (if they were already fixed one should test if a
contradiction is obtained). This means that, for the desired equality, it only remains
to be analyzed the equality ⌃(t0)

⌃(~x0 )
⌃(~s0 )

= (S(x+y) +S(S(0))). For this equality, one makes
a (finite) case analysis as before by means of fresh variables (this will yield a similar
analysis for the term-structures ~s0 ). If ⌃(t0) is already assigned to, for instance, ⌃(t0) =
S(⌃(x0) + y) + S(⌃(xi)), then one substitutes the already attributed t0 in the desired
equality, namely

(S(⌃(x0) + y) + S(⌃(xi )))
⌃(~x0 )
⌃(~s0 )

= S(x + y) + S(S(0)),

which entails that

S

⇣
⌃(x0)

⌃(~x0 )
⌃(~s0 )

+ y
⌃(~x0 )
⌃(~s0 )

⌘
+ S

⇣
⌃(xi )

⌃(~x0 )
⌃(~s0 )

⌘
= S(x + y) + S(S(0)),

and so
8>>>>>><>>>>>>:

⌃(x0)
⌃(~x0 )
⌃(~s0 )

= x

y
⌃(~x0 )
⌃(~s0 )

= y

⌃(xi )
⌃(~x0 )
⌃(~s0 )

= S(0);

something that can, once again, be easily solved through a case analysis. Throughout
the process one should add the suitable conditions on the variables. After that, one
substitutes the new information about the variables and one sees if any contradiction
is reached.

8. We do the previous procedure for each entry of the layout and also for atoms—in fact,
for formula-variables with replacements the fresh variables analysis remains valid: if
one has '~x

~s
, then one considers fresh term-variables t0 and t1, one considers ' as being

(t0 = t1), and one proceeds the analysis as before. For each case in the analysis of a
given entry, one should consider all the sub-cases in the other entries for the choices
that were made—this gives rise to a tree of possible cases; moving from one entry to
another, either a new case analysis is created, or one reaches a contradiction, which, by
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its turn, forces the considered case in the already established case analysis to change
(in particular this yields that the algorithm as a whole halts). One can computationally
check if there are any incompatibilities at any stage; if any incompatibility is detected,
one should consider another case in the analysis, if one reaches an incompatibility
with all cases, it means that there is no concrete-substitution in the desired conditions.
Observe that, for each entry, there is a finite number of ways to do the considered
procedure, which entails that in the whole schema there is also a finite number of
ways to consider all the possible cases.

9. In the end of a case analysis, one should test to see whether the conditions of the
schema are satisfied. This is achieved using Lemma 3.3.3. One should also test if ⌃
can be made in such a way that satisfies the Definition 3.3.5.

10. If the previous steps are not possible, one should reject.

From Lemma 3.3.2, if there is a concrete-substitution ⌃0 such that ⌃0(S 0) = ', then there
is a concrete substitution such that ⌃(S) = '. All the mentioned construction yields that
one can decide whether there is a concrete-substitution ⌃ such that ⌃(S) = '. a

It is important to observe that in the former algorithm it is not fundamental that the
Convention 3.3.6 is applied: if one has, for instance, the term-structure (txr )

y

s and one
wants it to be equal to a certain term, then one proceeds by forcing T

y

s to be equal to
that term using the considered analysis, and then one imposes ⌃(txr ) = ⌃(T ) and makes a
similar analysis for that fact; this means that if Convention 3.3.6 was not applied, then
one has to do several times the creation of the case analysis of stage 7 from the previous
algorithm. We opted to firstly apply the convention because it simplifies the analysis and
avoids having chained replacements.

3.3.3 Decidability of some proof-skeletons and k-provability

As mentioned in the introduction, the decidability of k-provability for PA with the usual
instantiation schema is an open problem and the proof-skeleton problem is in general
undecidable for that version of PA. Nevertheless, we will characterize some values of k for
which k-provability is decidable and some proof-skeletons for which the corresponding
proof-skeleton problem is decidable.

Definition 3.3.6. We say that a proof-skeleton S is stable (for T ) if there is a finite list of
provable-schemata LS such that:

Stability: A formula ' has a proof whose skeleton is S if, and only if, there are a schema
S in LS and a concrete-substitution ⌃ that satisfy ⌃(S) = '.

We say that a number k is stable (for T ) if all proof-skeletons with length at most k are
stable.

46



3.3. MAIN RESULTS

For stable proof-skeleton, the corresponding proof-skeleton problem is decidable, as
the next result confirms.

Theorem 3.3.3. If a proof-skeleton S is stable, then, for any formula ', it is decidable whether
' has a proof whose skeleton is S.

Proof. By definition, ' has a proof whose skeleton is S if, and only if, there are a schema
S in LS and a concrete-substitution ⌃ that satisfy ⌃(S) = '. The decidability follows
from the fact thatLS is finite and from Theorem 3.3.2 (one tests computationally for each
element of the finite list LS). a

If k is stable, then the respective k-provability is decidable, as the next result confirms.

Theorem 3.3.4. If k is a stable number, then, for any formula ', it is decidable whether
T `k steps '.

Proof. The result follows from the fact that for each k there is a finite number of proof-
skeletons with length k and from Theorem 3.3.3. a

Theorem 3.3.5. There is a maximum k stable number for PA0.

Proof. Suppose that there is no maximum k stable number for PA0. As the fact that k
is a stable number implies that, for all s  k, s is a stable number; it follows that all
numbers are stable for PA0. Thus, all proof-skeletons are stable. In particular, the proof-
skeletons from the proof of Theorem 6.1 from [31]—which is similar to the proof of 5.1
from [58]—are stable; from the previous Theorem, it follows that it is decidable whether
a formula has a proof whose skeleton is the skeletons from the proof of Theorem 6.1
from [31], which contradicts that very Theorem (when one adapts the proof to the theory
PA0). a

Although Theorem 3.3.4 presents a characterization of some proof-skeletons that
have the respective proof-skeleton problem decidable, we have no information on how
the lists were created; furthermore, so far we have no general way to generate (some of
the) stable proof-skeletons. We now proceed to develop a general way to generate stable
proof-skeletons.

From [58], we know that second-order unification is in general undecidable. In the
proof presented in that paper, the main idea was to represent, inside the context of second-
order unification, numerals, addition, and multiplication; something that is delivered by,
c.f. [58], equations that include:

s(⌧) = ⌧(a/s(a)),

⌧(a/�1, b/s(b), c/a � (b � c)) = �2 � (�3 � ⌧).

In the previous equations, we followed the notation of the considered paper, where s

denotes a unary function-symbol, � denotes a binary one, and �2,�3,⌧ term-variables. It
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is important to observe that, in the previous equations, one has in the two members of the
equality sign occurrences of the same term-variable and occurrences of variables being
replaced by something where that very variables occur. While this last feature can be
avoided, using Convention 3.3.6, the first feature will be something that we will not allow
in the algorithms that we are going to develop; for example, S(tx0x1 ) = t

x0
S(x1)

has an infinity
of solutions, namely t = S

n(x0), that cannot be written in a closed form like t = E, where
in Ewe do not have occurrences of natural numbers variables like Sn(x0). We will create
an algorithm that will be able to solve some systems of the form

8>>>>>><>>>>>>:

r0 = s0
...

rn = sn,

where r0, . . . , rn, s0, . . . , sn are term-structures (we will assume that the equations in the
left do not have common variables with the equations on the right): by a solution we
mean a common substitution to the left and the right side such that one achieves the
equality between them maybe after the application of several of the conventions (in fact,
we might achieve the equality after the application of several substitutions and several
conventions)—for each substitution there might be several ways to apply the conventions
that yield several solutions. The main move that we are going to make is to avoid the
mentioned occurrences of equal term-variables while the algorithm is running, this o↵ers
no problem since we will not develop a general algorithm and since the reasoning of
[58] cannot be applied—we force the algorithm not to have the needed conditions for the
proof, and thus avoid the undecidability; we do this with the cost that the algorithm will
reject or not halt systems that indeed have a solution.

Algorithm 3.3.1. We will describe an algorithm that, for certain cases, sees whether there
is a substitution � such that

8>>>>>><>>>>>>:

�(r0) = �(s0)
...

�(rn) = �(sn),

where r0, . . . , rn, s0, . . . , sn are term-structures. Furthermore, such a � can be found (for
some cases) without the introduction of unnecessary complexity. Following Convention
3.3.4, we assume that the ri ’s and sj ’s do not have common meta-variables. Furthermore,
we assume that Convention 3.3.6 was already applied. The algorithm is as follows:

1. Starting from i = 0, do the following to construct a list of equations:

1.1. If ri and si are term-structures without term-variables, then see if it is possible to
identify the variable-variables in such a way that �(ri ) = �(si ) and add this fact to
the list; if it is not possible, then reject.
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1.2. If ri or si is of the form t
~x

~s
, then add to the list of equations t~x

~s
= si , when ri = t

~x

~s
,

and ri = t
~x

~s
, for the other case.

1.3. If ri and si are both term-structures with an outermost occurrence of a function-
symbol, then test whether the function-symbol is the same.

1.4. If it is not, then reject.

1.5. If ri = S(t0) and r1 = S(t1), with t0 and t1 term-structures, then apply the previous
procedure to t0 and t1 and add t0 = t1 to the list. Do the same for + and ⇥. This
means that for each pair of terms ri and si , one should see if ri = t0 + t1 and
si = t2 ⇥ t3, or ri = t2 ⇥ t3 and si = t0 + t1. If it occurs, then reject; and for each pair
of terms ri and si with ri = t0 � t1 and si = t2 � t3, do the previous procedure for t0
with t2, and t1 with t3, where � is + or ⇥, and add t0 = t2 and t1 = t3 to the list.

1.6. Do the previous procedure until no further reductions are possible (this must
stop after a finite number of steps). Thus, one should apply the procedure until
one reaches either a rejection or has analyzed all possible cases.

1.7. Increment i until all the values for i were considered.

2. Let us now assume that a list was build without reaching a rejecting state.

3. As mentioned in 1.1, one has to make the suitable variable identification (for example
using fresh variable-variables). For instance, if one has in the list an equation of the
form

(· · ·+ x)⇥ · · · = (· · ·+ y)⇥ · · · ,

where x and y occur in the same place of the layout of the function-symbols, then one
has to assign x and y to a new fresh common variable-variable. With this, we get the
true equality

(· · ·+�(x))⇥ · · · = (· · ·+�(y))⇥ · · · .

If any of them was already assigned, assign all the variables previously assigned to
this new common fresh variable.

4. Proceed in a similar way with the occurrence of term-variables that do not occur under
the scope of a replacement. This means that if one has an equation of the form

((t0 ⇥ t1) + S(0))⇥ · · · = ((t2 ⇥ y) + t3)⇥ · · · ,

then �(t0) = �(t2) = t, with t fresh, �(t1) = �(y), and �(t3) = S(0).

5. Let us now briefly describe the most complex case.

49



CHAPTER 3. k-PROVABILITY IN PA

6. Suppose we have in the list equations of the following form (observe that the analysis
of the list can be reduced to the analysis of the next system), where we are implicitly
considering in the left-side the r-part, and in the right-side the s-part:

n equations

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

(t0)
~x0
~s0

= (· · ·+ (x +0))⇥ (· · · (y + x)⇥ 0)
(t0)

~x2
~s2

= ((· · ·⇥ (x ⇥ 0)))⇥ t2
(· · ·⇥ (x + S(0))) + 0 = (t4)

~x5
~s5

...

(t5)
~x6
~s6

= (· · ·+ (y ⇥ 0))⇥ S(S(0)).

Do the following (the next procedure is a kind of co-recursion because one should
apply the whole procedure to smaller parts of the very same procedure):

6.1. Firstly, substitute the already changed variable-variables and term-variables in
the equations (one should do this step at every stage of the algorithm).

6.2. If at any stage one obtains an equality where in both members one has an occur-
rence of t~x

~s
, one should output problem.

6.3. If at any stage one obtains a non-trivial equality (i.e. not yet syntactically satisfied)
where in both members one has an occurrence of the same term-variable one
should output problem.

6.4. Starting from i = 1 (up to n), solve, if possible, the first equation in the following
way:

6.4.1. Consider the term-structure that corresponds to the right-side (respectively
left-side) of the equation where some occurrences of term-structures in
the considered equation were replaced by fresh variables (analyze all the
finitely many possibilities for this).

6.4.2. Analyze all the possibilities to identify the fresh variables with the variables-
variables �(~x0 ) and see what the term-structures �(~s0 ) ought to be—keep
in mind that all the conventions ought to be satisfied (this fact can be ver-
ified in a decidable way)4. If one has one of the variables �(~x0 ) occurring
in the opposite side, one should reject, since that is an impossibility5. One
should always substitute the already found solutions in the new equations.

6.4.3. In �(~s0 ) there might occur complex term-structure that would require an
analysis similar to the one that we are considering (for example, s0 could
be tx

t0+t1) and would yield a new system to be solved (to create the system
we replicate the previous steps for the creation of the list and the fresh vari-
ables analysis). Without loss of generality, we might proceed our analysis

4This idea was also used at stage 7 in the second procedure of the proof of Theorem 3.3.2.
5In the context of (provable) schemata, one should add condition C4 for the variables that are being

considered as being di↵erent throughout the procedure (the analogous situation for the other conventions).
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because the algorithm will account for all the cases due to its co-recursive
nature. We allow the occurrence of equations of the form

(t0)
~x0
~s0

= ((x + y)⇥ 0) + (S(t1) + S(0)).

6.4.4. For instance, in the case analysis of the previous stage, onemight have tx0
r
x1
s

=
(x + y)⇥ z. One should consider the cases as in 7 in the second procedure
of the proof of Lemma 3.3.2 and as mentioned before. One of the cases is
�(t) = �(x0) ⇥ �(z) with �(rx1s ) = �(x + y). Then, for the previous equality,
one should also carry a similar analysis. For example, �(r) = �(x1) + �(y),
with �(s) = �(x). In all, for the considered case, we get

�(tx0
r
x1
s

) =�(t)�(x0)
�(r)�(x1)

�(s)

= (�(x0)⇥�(z))�(x0)
�(r)�(x1)

�(s)

= �(r)�(x1)
�(s) ⇥�(z) =

(�(x1) +�(y))
�(x1)
�(s) ⇥�(z) = (�(x) +�(y))⇥�(z) = �((x + y)⇥ z).

Observe that, in the previous analysis, we considered the variables as being
di↵erent when the replacements are applied because they are fresh, they
do not occur at all. Furthermore, observe that, for the considered case, �(z)
cannot be identified with �(x0) just like �(x1) cannot be identified with
�(y) (otherwise we would get a contradiction, in particular if we apply
concrete-substitutions)—one should add the suitable conditions to express
this fact. This means that the replacements that we are considering here
act only on the fresh variables, without the possibility of overlapping the
left with the right side, as mentioned.

6.4.5. If a term-variable occurs in the other side of the equation, one should also
consider, together with the fresh variables construction, the case where for
that entry one places a fresh term-variable in the term-structure that one
is creating. For example, if one has

(t0)
x

s
= (S(0) + y) + t1,

one of the cases that one should analyze is the case where �(t0) = (�(x) +
�(y)) + t, with t fresh, which entails that �(t1) = t

�(x)
�(s) . This serves to

cover the possibility, under the interpretation of the equality via concrete-
substitutions, that the concrete term that results from t1 was placed using
the considered replacement to some other term in that very position in the
function-symbols layout.

6.4.6. Take note of the possible ones—the admissible possibilities form a tree,
in the sense that for one case one might have to analyze a great variety of
sub-cases. Unlike the proof of Theorem 3.3.2 where the second algorithm
only asks for a successful path in the tree, in this algorithm we want to
study all admissible possibilities, since we want to find all the solutions to
the system.
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6.4.7. If one reaches an impossibility in the case analysis one should reject that
case and consider the other remaining cases.

6.5. If, at any stage, there are no solutions, one should reject.

6.6. Suppose that the system was solved, if possible, for i < n. Then, do the following:

6.6.1. Consider the (i +1)-th equation, say (t5)
~x6
~s6

= (· · ·+ (y ⇥ 0))⇥ S(S(0)).
6.6.2. Substitute the already found term-structures and, if necessary, create new

systems for the equalities that emerge.

6.6.3. In particular, if t5 was already found, then substitute it for the found so-
lution, make a case analysis for the applications of the replacements, and
solve the considered equation. If t5 was not yet assigned, then solve the
equation using the fresh variables analysis and with 6.2.5.

6.6.4. Substitute in the previously obtained solutions the new ones and if neces-
sary solve the new equations that emerge.

7. Output all the found solutions.

We say that a system is successful if it halts and is not rejected as a whole (nevertheless,
we allow that in the case analysis some cases are rejected), and if in the case analysis
no problem situation appeared. What we described is not a complete description of
the algorithm, but it has the main ideas that are necessary to develop the much more
complex and involved complete description of the algorithm. We considered particular
cases in the algorithm to emphasize the main ideas. For instance, in the hard case that we
presented—the one with a new system—, a more general approach is needed to write the
complete algorithm.

Let us give an example of the some steps of the previous procedure. Suppose that one
is given the system

8>>><>>>:

(t0)
x0 x1
s0 s1

= (x ⇥ y) + t1

(t0)
x3
s3

= (x ⇥ x) + S(0).

As the algorithm suggests, one should start by considering the first equation (the other
cases should also be studied). One should consider all the sub-term-structures of (x⇥y)+t1
and replace some occurrences by fresh variables, and then unify them, using substitutions,
with x0 or x1; furthermore, one should proceed with the term-variables as described in
6.4.5. For example, for (x⇥y)+ t1, one could consider, after the suitable unifications, t0 as
being (x0 ⇥ x1) + t, t1 as being t

x0 x1
s0 s1 , where t is fresh, s0 as being x, and s1 as being y. This

constitutes a solution to the first equation.
Following the algorithm, then one should substitute the obtained solution in the

second equation, giving ((x0 ⇥ x1) + t)x3
s3
= (x ⇥ x) + S(0), i.e.

((x0)
x3
s3
⇥ (x1)x3s3 ) + t

x3
s3 = (x ⇥ x) + S(0).
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This entails that
8>>><>>>:

(x0)
x3
s3
⇥ (x1)x3s3 = x ⇥ x
t
x3
s3 = S(0).

So, after another case analysis, one of the cases is
8>>><>>>:

(x0)
x3
s3

= (x1)
x3
s3
= x

t
x3
s3 = S(0).

Hence, for this case, x0 = x and x0 is not x3, or x0 = x3 and s3 = x; similarly for x1. Let us
now focus in the second equation from the previous system. We proceed as before with a
case analysis, one of the cases yields that t as being S(0); after that, one substitutes t in t0,
yielding (x0 ⇥ x1) + S(0), and in t1, yielding S(0). Observe that in the considered cases no
problem was identified (it is not hard to see that the previous system is successful).

In the end we get, if not all the cases are rejections and no problem was obtained, sub-
stitutions � in the desired conditions. Furthermore, such substitutions are most general
ones, in the sense that they do not introduce unnecessary complexity and unnecessary
identifications (just like a most general unifier).

Convention 3.3.8. We assume that A is a generic algorithm that solves some unification
(of term-structures) problems (for example by a case analysis) and without the introduc-
tion of unnecessary complexity—i.e. has as output a finite number ofmost general unifiers
in the sense that we used previously—, with some situations where it might output prob-
lem. We assume that A works in a very similar way to Algorithm 3.3.1 (for instance, it
might use a case analysis, it might use substitution of found solutions, it might use the
creation of the systems, by considering all possible situation for the system, for some
of them might output problem, etc). We will say that A is successful for a given system
if it halts and no problem situations were identified during the computations, just like
what was considered for the previous algorithm. We assume that A gives informations
about the conditions needed for each step in the context of provable schemata (just like
Algorithm 3.3.1) and that has the following feature:

Sub. property: If A is successful for the system
8>>>>>><>>>>>>:

r0 = s0
...

rn = sn,

and there are concrete-substitutions ⌃0 and ⌃1 such that
8>>>>>><>>>>>>:

⌃0(r0) = ⌃1(s0)
...

⌃0(rn) = ⌃1(sn),

53



CHAPTER 3. k-PROVABILITY IN PA

then there are a solution � of the system that is constructed by the algorithm A and
a concrete-substitution ⌃ such that

8>>>>>><>>>>>>:

⌃0(r0) = ⌃(�(r0)) = ⌃(�(s0)) = ⌃1(s0)
...

⌃0(rn) = ⌃(�(rn)) = ⌃(�(sn)) = ⌃1(sn).

We also assume that the previous property is compatible with the conventions that
the algorithm gives as additional information and that if t is a term-structure, then
⌃(�(t)) = ⌃i(t), for i = 0,1, depending on the concrete-substitution for which the
value of t defined (this last condition is useful when one is dealing with provable
schemata).

It is important to observe that Algorithm 3.3.1 has the Sub. property: if the algorithm
3.3.1 is successful for a considered system and one is given concrete-substitutions as
before, then, guided by the concrete-substitutions ⌃0 and ⌃1, one can use the Algo-
rithm 3.3.1 to obtain a desired solution �—here the concrete-substitutions can be used
to identify the choices that one has to make while running the algorithm; moreover, the
algorithm will be successful (by hypothesis); the existence of a concrete-substitution ⌃
with the mentioned properties follows from the fact that all the choices that were made
for the construction of � were guided by the concrete-substitutions ⌃0 and ⌃1.

Observe that one can conceive several algorithm that satisfy the Sub. Property; for
instance, one can extend Algorithm 3.3.1 to account for other possibilities without out-
putting problem so often. For example, one could extend Algorithm 3.3.1 by allowing
situations where one has occurrences of replacements in the two sides of the equality, like

(t0)
x0
s0
= (S(S(0)) + x1)⇥ (t1)x1s1 ,

under the proviso that no variable-variable in the replacement in the opposite side can
be identified with a variable-variable that occurs in the considered replacement. Observe
that x1 is a variable-variable in the replacement that occurs in the opposite side of the
considered replacement, but, under the concrete-substitution interpretation, it cannot
be x0, since it occurs again in the right side, namely in (S(S(0)) + x1). Then, one makes
the usual fresh variable analysis, but, similarly to stage 6.4.5, one also accounts for the
possibility of internal application of the replacement; in the considered example, this
means that one of the cases to be considered is the one where t0 is (x0 + x1)⇥ tx1s1 , with t

fresh, s0 is S(S(0)), and t1 is t
x0
s0 . Let us briefly justify what was described. Let us suppose

now that t0, t1, s0, and s1 are concrete terms, and x0, x1 concrete variables. Assume that
x0 is not x1 and that

(t0)
x0
s0
= (t1)

x1
s1
,

where both variables are being replaced, i.e. x0 occurs in t0 and x1 in t1. It is not hard to
conclude that x0 cannot occur in s1, just like x1 cannot occur in s0. Consider t as being
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the term obtained from (t0)
x0
s0

(that is the same as (t1)
x1
s1
) by replacing the occurrences of

s0 that were placed using the replacement by x0, and the same for s1 and x1. Then, t has
x0 and x1 as variables. Furthermore, it follows that

8>>><>>>:

t
x0
s0 = t1

t
x1
s1 = t0,

as desired. This justifies the described procedure that one can add to Algorithm 3.3.1.
Observe that in the justification it was used the fact that x0 is not x1, otherwise the
construction of t could fail; for example, for t0 = S(S(x0)), s0 = x, t1 = S(x1), and s1 = S(x)
one has that (t0)

x0
s0

= (t1)
x1
s1
, but one cannot construct t as before, since s0 is being placed

in the same place as s1. It is worth mentioning that the described impossibility is in the
heart of the undecidability of second-order unification: keep in mind that, for example,
S(tx0x1 ) = t

x0
S(x1)

has an infinity of solutions, namely t = S
n(x0), that cannot be written in a

closed form without using natural numbers, in fact a variation of this is used to represent
the natural numbers inside the context of second-order unification in [58] (the idea of the
proof of the undecidability is to represent natural numbers, addition, and multiplication
inside second-order unification and apply Matijasevi÷’s Theorem).

We believe that Algorithm 3.3.1 halts for every input, but we do not have a proof
of that fact or a counter-example to it; the reason for this is that we believe that if a
loop situation is reached using substitutions and replacements, then one must have an
occurrence of the same term-variable in both sides of a given equation, something that
is accounted for by the algorithm by just outputting problem. All this concern about
the halting nature of algorithm 3.3.1 is not necessary for what we are going to develop
because we want to account for other algorithms that might not halt on every input (that
is why we assumed the previous convention), thus the halting nature of algorithm 3.3.1
is a side discussion to our goal.

We move to create the desired lists that give a more concrete inside of Theorem 3.3.3.

List 3.3.1. We now proceed to create lists, for each k and each algorithm A, of provable
schemata, LA,k , and proof-skeletons, LA,k .

Basis case: The list LA,0, for the case k = 0, is simply the (finite) list of axioms. The list
LA,0 is the list of the numbers of the schemata that are axioms.

Inductive step: Suppose that the lists LA,s and LA,s, with s  k, where already created.
Add all elements of LA,k to LA,k+1, and all elements of LA,k to LA,k+1. Consider the
following cases:

Gen: If S is a schema in LA,k , then pick x a variable-variable and add 8x.S(&C)
to LA,k+1—the respective schema obtained by placing a universal quantifier,
just like in Definition 3.3.4. If S is a proof-skeleton in LA,k , then add Gen(S) to
LA,k+1.
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MP: Take k = k0 + k1. Do the following:

1. Consider S0 a schema in LA,k0 and S1 a schema in LA,k1 .

2. If S1 is a universal quantification or a negation, then reject and consider
another pair.

3. Suppose that

• S0 := F['0
0 , . . . ,'

0
n0
, t
0
0 , . . . , t

0
n1
, v

0
0 , . . . , v

0
n2
]&

W
i2I0 &j2J0

i

⇠k
0,0
j C

k
0,1
j

(A0
i
, t
k
0,2
j

, v
k
0,3
j

),
and

• S1 := G['1
0 , . . . ,'

1
n3
, t
1
0 , . . . , t

1
n4
, v

1
0 , . . . , v

1
n5
]!H['2

0 , . . . ,'
2
n6
, t
2
0 , . . . , t

2
n7
, v

2
0 , . . . ,

v
2
n8
]&

W
i2I1 &j2J1

i

⇠k
1,0
j C

k
1,1
j

(A1
i
, t
k
1,2
j

, v
k
1,3
j

).

4. We now proceed to see whether F and G can be unified by means of a
substitution � using the algorithmA and the previously developedmethods.
We assume that the conventions were already applied to these schemata.

5. Using the ideas of the previous proofs (with the suitable adaptations), it is
not hard to see that one can test whether F and G have a common layout.

6. If they do not have, then reject and consider another pair of schemata.

7. If they have, find the common layout in such a way that unnecessary com-
plexity is avoided (follow the ideas of the previous proofs).

8. Starting from the first entry of the common layout, do the following:

8.1. Proceed with the quantifiers and negation signs as before (for instance,
like in the proof of Lemma 3.3.1).

8.2. One should create a system for the cases where in both entries one has
something of the form X0 · · ·Xnr = s, with r and s term-structures. Act
accordingly with the quantifiers and the negation signs. If it is not
possible, then reject and consider another pair of proof-skeletons.

8.3. One should run algorithm A (for example Algorithm 3.3.1) for the
needed equalities of term-structures that emerge.

8.4. IfA is not successful, then reject and consider another pair of schemata.

8.5. Assume for the rest of the procedure that the algorithm A is successful.
Take note of all solutions.

8.6. Consider the case where one has in one entry X0
0 · · ·X0

`0
('0)

~x0
~s0

and in the
other one hasX1

0 · · ·X1
`1
r = s. Firstly, act accordingly with the quantifiers

and negation signs (see, for example, 4.1.1 of the proof of Lemma 3.3.1).
If it is not possible, then reject and consider another pair of schemata.

8.7. If any of the ~x0 appears in r = s, then reject and consider another pair
of schemata. If '0 was already assigned to something of the form
X

2
0 · · ·X2

`2
r
0 = s

0, then apply the considered replacement (this yields a
case analysis). Apply the conventions and force it to be X

1
0 · · ·X1

`1
r =

s; this will give rise to another system that one should solve using
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algorithm A. If the system is not successful, then reject and consider
another pair of schemata. If it is, save the solutions. If '0 was not yet
assigned to such a structure, then consider'0 as being t = t

0, with t and
t
0 fresh term-variables. Run the algorithm A to solve the systems that
emerge and proceed only in the case where the algorithm is successful
(all the cases analyzed should include the suitable information about
the conditions that are needed at each stage).

8.8. One now considers all entries were ones has something of the form
X0 · · ·Xn('0)

~x0
~s0

in both entries.

8.9. We assume, due to our conventions, that in the considered case we do
not have the same formula-variable occurring. Act accordingly with
the quantifiers and the negation signs. If it is not possible, then reject
and consider another pair of schemata.

8.10. If both formula-variables were already assigned to something of the
form X0 · · ·X`0r = s, then apply the replacements, apply the conven-
tions, and, for each case of the conventions, solve the obtained system
in the previously mentioned ways. If any of the systems is not success-
ful, reject and consider another pair of schemata.

8.11. If only one of them was mapped to the mentioned structure, adapt
step 8.6.

8.12. Suppose now that non of the formula-variables was assigned. Then,
one should unify them like what was done for the case of Algorithm
3.3.1 for term-variables. If one needs to satisfy an equality where in
both members of the equality one has something of the form '

~x

~s
, then

reject and consider another pair of schemata; otherwise proceed as
before by substituting the already attributed values. For example, if
one has the equations '0 = '1, '1 = '2, then one assigns all those
formula-variables to a common fresh formula-variable, say '; if one
has '0 = 'x

s and '2 = '0, then one assigns '2 to 'x
s .

8.13. Apply the previous steps to all entries.

9. If we do not get a rejection for the considered schemata in the previous
procedure, then apply to each of the final results the conventions and then
add the all resulting provable schemata to the list LA,k+1:
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CHAPTER 3. k-PROVABILITY IN PA

where C are, possibly, the conditions that appear from the conventions and
the solutions of the considered systems.

10. Consider S0 a proof-skeleton in LA,k0 and S1 a proof-skeleton in LA,k1 .

11. If for all schemata S0 inLA,k0 with skeletonS0 and S1 inLA,k1 with skeleton
S1, the previous procedure does not yield a rejection, then one should add
MP(S0,S1) to LA,k+1; if for any of them one rejects, then one should consider
another pair of proof-skeletons and do the same move.

It is important to observe that the previous constructions do not contradict the unde-
cidability of second-order unification problem (see, for instance, [58]): we are considering
di↵erent types of terms, namely term-structures; we are considering a di↵erent type of
substitutions � ; and in Algorithm 3.3.1 we do not allow the occurrence of a term-variable
in both sides of an equation, something that is indispensable in the proof of the undecid-
ability of second-order unification in [58]. One should keep in mind that the algorithms
that we are considering are all necessarily partial—they cannot solve successfully all
systems.

Observe that for each k and A, the lists Lk,A and Lk,A are finite—this follows by
construction, in particular from the fact that for each convention there is a finite number
of ways to apply it, and from the fact that the systems that are successful have a finite
number of (most general) solutions for the considered algorithm. Although we presented
an inductive construction of the lists, they are not necessarily computable uniformly
in k; nevertheless, for each fixed k, LA,k and LA,k are computable due to the fact that
they are finite (and all finite lists are computable). The computable uniformity of the
lists would entail that, for small values of k, one could, for the considered algorithm A,
computationally decide if a given system is successful for A (a feature that fails for most
algorithms).

Definition 3.3.7. We say that a proof-skeleton S is grounded for A if S is in LA,k , where k
is the number of steps of S. We say that k is a grounded number for A if all proof-skeleton
whose number of steps is at most k are grounded for A. We will consider LA := [kLA,k

and LA := [kLA,k .

If one makes some assumptions about the way the lists were generated—if one as-
sumes that there is a general way to create them, if one assumes that in the construction
one does not include unnecessary complexity, etc—, for most cases, the stable proof-
skeletons are also grounded for some algorithm A.

The intuition behind grounded proof-skeletons is that, to such skeletons, one can
apply the intuitive reasoning made in the beginning of Section 3.3.1 for the analysis
of the proofs whose general structure is given by the skeleton MP([L2],MP([L2], [L1])).
Furthermore, a grounded number is a number such that all proof-skeletons of proofs that
have that very same number as the maximum number of steps are grounded.
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Theorem 3.3.6. Given S a grounded proof-skeleton for A in LA,k , if ' has a proof whose
skeleton is S, then there are a schema S in LA,k with skeleton S, generated by the algorithms,
and a concrete-substitution ⌃ such that ⌃(S) = '.

Proof. Let us prove the result by induction on k. If S is in LA,0, then S is the number of
an axiom; thus, if ' has a proof whose skeleton is S, then there are a schema S in LA,0

with skeleton S, generated by the algorithms, and a concrete-substitution ⌃ such that
⌃(S) = '. Suppose, by induction hypothesis, that the result holds for s  k. Suppose that
S is in LA,k+1 and that ' has a proof whose skeleton is S. Consider the following cases:

S= Gen(S0): In this case, one must have ' = 8x. and  should have a proof whose skele-
ton is S0. By construction, S0 must be in LA,k . By induction hypothesis, there are
a schema S0 in LA,k with skeleton S0, generated by the algorithms, and a concrete-
substitution ⌃ such that ⌃(S0) =  . It is clear that the schema 8v.S0, obtained by
S0 using the generalisation rule, is in LA,k+1; furthermore, 8v.S0 has skeleton S.
Moreover, one can extend ⌃ in such a way that ⌃(8v.S0) = 8x.⌃(S0) = 8x. = '.

S=MP(S0,S1): In this case, there must be a  such that  has a proof whose skeleton is
S0 and  ! ' has a proof whose skeleton is S1. So, one has S0 in LA,k0 and S1 in
LA,k1 , with k = k0 + k1. By induction hypothesis, there are schemata S0 in LA,k0 with
skeleton S0 and S1 in LA,k1 with skeleton S1, and concrete-substitutions ⌃0 and ⌃1

such that ⌃0(S0) =  and ⌃1(S1) =  ! '. Lemma 3.3.1 guarantees that there is a
substitution that unifies F andG; furthermore, guided by the concrete-substitutions
⌃0 and ⌃1, one can use the previous algorithms to obtain a minimal unifier � for
the algorithm A (the concrete-substitutions can be used to see what choices should
be done while running the algorithm)—this follows, more directly, from the Sub.
property of Convention 3.3.8 (and from the fact that a version of Sub. Property
holds for formula-variables); moreover, the algorithm will be successful because S
is grounded. Thus, using � from the algorithm, �(F) = �(G). Clearly, the schema
�(H)—this schema includes the suitable conventions—is inLA,k+1. Moreover, using
the reasoning of the proof of Lemma 3.3.1 and the Sub. property, one can guarantee
the existence a concrete-substitution ⌃ such that ⌃(�(H)) = '.

The result follows by induction. a

Corollary 3.3.1. Given Sa grounded proof-skeleton for A, for each formula ', it is decidable
whether there is a proof of ' whose skeleton is S.

Proof. Consider S a grounded proof-skeleton for A. Generate, using the previous pro-
cedures for the algorithm A, the schemata that have S as proof-skeleton, let us call this
finite list R. These obtained schemata are minimal in the sense that there was added
no unnecessary complexity to the substitutions. Let us prove that ' has a proof whose
skeleton is S if, and only if, there are a concrete-substitution ⌃ and S in R such that
⌃(S) = '. It is clear that if there are a concrete-substitution ⌃ and S in R such that
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⌃(R) = ', then ' has a proof whose skeleton is S (this can be proved by induction on the
definition of proof-skeleton). Let us prove the other direction. Suppose that ' has a proof
whose skeleton is S. Then, by the previous result, there are a schema S with skeleton S,
generated by the algorithms, and a concrete-substitution ⌃ such that ⌃(S) = '. Clearly S

is in R, so the desired result holds.
The decidability follows from the fact the the list R is finite and from Theorem 3.3.2.

a

From the proof of the previous result we can conclude that every grounded skeleton
is stable. Thus, every grounded number is stable.

Theorem 3.3.7. For k a grounded number for A, T `k steps ' if, and only if, there are a schema
S in LA,k and a concrete-substitution ⌃ such that ⌃(S) = '.

Proof. Clearly, if there is a schema S in LA,k and a concrete-substitution ⌃ such that
⌃(S) = ', then T `k steps ' (this follows by a simple induction argument). Let us prove
the other direction by induction on k. It is clear that the result holds for k = 0, the axiom
case. Suppose, by induction hypothesis, that the result holds for all s  k. Suppose that
k + 1 is a grounded number for A and consider ' such that T `k +1 steps '. We have two
cases:

Last step uses Gen: In this case, we have that ' = 8x. and T `k steps  . It follows from
the definition that k is a grounded number for A. By induction hypothesis, there
are a schema S in LA,k and a concrete-substitution ⌃ such that ⌃(S) =  . Consider
8v.S the schema that is obtained from S by the generalisation rule. Clearly, 8v.S is
in LA,k+1. Furthermore, we can extend ⌃ in such a way that ⌃(8v.S) = 8x. = '.

Last step uses MP: In this case, there is a formula  such that T `k0 steps  and T `k1 steps

 ! ', with k = k0 + k1. It follows that k0 and k1 are grounded numbers for A.
By induction hypothesis, there are schemata F in LA,k0 and G ! H in LA,k1 , and
concrete-substitutions ⌃0 and ⌃1 such that ⌃0(F) =  and ⌃1(G!H) =  ! '. By
the reasoning of the proof of Theorem 3.3.6, we can guarantee the existence of a
suitable substitution � delivered by the algorithm such that �(F) = �(G). As k + 1
is a grounded number for A, the algorithm must be successful and thus �(H) is
in LA,k+1. As � is minimal in the sense of introduction of unnecessary complexity
and by the reasoning of the proof of Theorem 3.3.6 (the fact that � was chosen
using the concrete-substitutions), there must be a concrete-substitution ⌃ such that
⌃(�(H)) = '.

The result follows by induction. One could also prove the result using the proof of
Corollary 3.3.1. a

Corollary 3.3.2. Given k a grounded number for A, it is decidable whether T `k steps '.
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Proof. One considers the finite listLA,k . By the previous result, it is enough to see whether
there is a concrete-substitution ⌃ and S in LA,k such that ⌃(S) = ', something that is
decidable from the fact that LA,k is finite and from Theorem 3.3.2. This also follows from
Theorem 3.3.4. a

Corollary 3.3.3. Given k a grounded number forA in PA0, it is decidable whether PA0 `k steps '.

Proof. Follows from the previous result when one has in mind that PA0 is one of the
considered theories. a

Corollary 3.3.4. Given k a grounded number for A in PA0, it is decidable whether PA `k steps '.

Proof. Follows from the previous Corollary and Theorem 3.2.3. a

Theorem 3.3.8. Given A, there is an infinite number of schemata in LA.

Proof. It is not hard to see that all schemata that are constructed using only the propo-
sitional logic axioms, L1–L3 in the initial list, are in LA. Furthermore, besides these
propositional schemata, there are much more schemata in LA: the only restriction that
ones has is that they do not yield the problem cases in their construction and the algo-
rithm halts without rejecting. a

Theorem 3.3.9. Given an algorithm A, there is an algorithmHA such that, for every grounded
proof-skeleton Sand every formula ', the algorithm halts and accepts for Sand ' if, and only
if, ' has a proof whose skeleton is S.

Proof. Fix an algorithm A. For a proof-skeleton S, the algorithm HA—using the construc-
tion of the schemata in LA—tries to generate all the provable schemata in LA whose
skeleton is S. Observe that in the construction of the lists LA,k one needed to make as-
sumptions about the successfulness of the algorithm A for certain systems, but in this
algorithm we do not make those (possibly non-computable) assumptions; the rest of the
process remains the same, but one only focus on the construction of the schemata that
potentially have skeleton S. This yields no problem because the construction of the lists is
computable with possible exception of the successfulness conditions. For non-grounded
proof-skeletons (not in LA) the algorithm might not halt. Suppose that S is a grounded
proof-skeleton. Then, the algorithm HA can successfully construct the lists R from the
proof of Corollary 3.3.1. Thus, using Theorem 3.3.2, the algorithm can decide whether '
has a proof whose skeleton is S. a

The algorithms HA have, in a sense, implemented the idea of the analysis made to the
skeleton MP([L2)],MP([L2)], [L1)])) in the beginning of Section 3.3.1.

Theorem 3.3.10. If T is such that T `k steps ' is uniformly decidable in k, then there is a
recursive function f (k,') such that

T `k steps ' =) T `f (k,') symbols '.
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Proof. Assume T `k steps ' is uniformly decidable in k. Consider the (partial) recursive
functions

c(k,') := µn[n is the code of a proof of ' in T with at most k steps],

and

sym(s) :=

8>>>>>><>>>>>>:

number of symbols in

the proof whose code is s, s is the code of a proof in T

0, otherwise.

By hypothesis, we can decide uniformly in k if T `k steps ' holds or not. Thus, the function

f (k,') :=

8>>><>>>:

sym(c(k,')), T `k steps '

0, otherwise.

is, by construction, a total recursive-function that satisfies the desired property. a

Theorem 3.3.11. If T is such that there is a recursive function f (k,') such that

T `k steps ' =) T `k steps and f (k,') symbols ',

then T `k steps ' is uniformly decidable in k.

Proof. Assume there is a recursive-function f (k,') satisfying the considered property.
Let us consider the following algorithm.

1. Input: k and '.

2. Compute f (k,'). If there is a proof of ' in k steps, then there is a proof of ' with at
most f (k,') symbols; such a proof would use at most f (k,') variables, furthermore it
does not matter the choice of variables that one makes in the sense that if one changes
all the occurrences of a given variable in the proof one continues to have a sound proof.
Take a finite list of at most f (k,') variables.

3. Consider a finite list I0 of symbols consisting of: the logical symbols (‘8’, ‘¬’, and ‘!’),
‘=’, ‘(’, ‘)’, ‘S’, ‘+’, ‘⇥’, ‘0’ and the previously mentioned finite list of variables. Consider
also a blank symbol ‘B’ (just to separate the candidate formulas in a proof to be) not
in I0.

4. Using only symbols from I0 and ‘B’, generate a list Iof all the (finitely many) possible
lists of symbols which contain at most f (k,') ones from I0 that have ' as the last
element of the list.

5. Test if any element of I is a proof in T with k steps (clearly, this can be done in a
computational manner): output 1 in a�rmative case, and 0 in the negative case.
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It is not hard to see that the previous algorithm decides uniformly in k the relation
T `k steps '. a

Consider PAa as being any formulation of PA considered in [31] and proved to have
a decidable k-provability. The next result is a solution to Problem 20 of [18] for these
formulations (and not in general), a problem proposed by Krají÷ek.

Corollary 3.3.5. There is a recursive-function f (k,') such that

PAa `k steps ' =) PAa `f (k,') symbols '.

Proof. Follows from Theorem 3.3.10 and the fact that PAa `k steps ' was proved to be
decidable uniformly in k (see [31]). a
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4
Montagna’s Problem and Kreisel’s

Conjecture

4.1 Preliminaries

For a (partial) recursive function h, the notation T `h ' expresses that h(#') is defined
and ' is provable in T with a proof whose code is at most h(#'). This notion generalizes
the approach followed in [65, p. 33–35]. Clearly, `h depends heavily on the chosen Gödel-
numbering: di↵erent codings give rise to di↵erent notions. For the rest of this chapter,
the concrete Gödel-numbering is assumed to be a fixed one; moreover, we assume that T
is a r.e. extension of PA.

Given T , the theory KT extends T by the following axiom schema:

Axiom K. If f is a total recursive function such that, for all n 2 N, f (n) 6= 0, and R(x,y) is a
formula that strongly-represents f in T , then KT ` 8x.¬R(x,0).

This schema can be restricted to a smaller class of functions in such a way that KT

might be recursively enumerable.

4.2 Introduction

According to [35], Kreisel’s Conjecture is the statement:

If, for all n 2 N, PA `k steps '(n), then PA ` 8x.'(x). [Kreisel’s Conjecture]

Kreisel’s Conjecture has been studied for di↵erent system, with partial solutions for
specific theories of arithmetic besides PA—see, for instance, [73], [68], and [1]; for a
detailed account on the Conjecture we refer to [15].
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In this chapter, we present results similar to Kreisel’s Conjecture for `h, which are
not restricted to PA. Furthermore, we present general results concerning notions of prov-
ability and study the following problem proposed by Montagna in [18, p. 9]:

Does PA `k steps PrPA(p'q)! ' imply PA `k steps '? [Montagna’s Problem]

Besides studying the original problem, we also study the following variant of this ques-
tion:

Does T `h PrT (pPrT (p'q)! 'q) imply T `h '? [Adapted Montagna’s Problem]

A part of this chapter gave rise to the following paper: [86].
It is an interesting features of our approach on Kreisel’s Conjecture that it does not

depend so heavily on the particular axiomatization of T that one chooses. In some sense,
it can be seen as a uniform approach, since it applies to any consistent theory T that is a
recursively enumerable extension of PA.

For h a total recursive function, the adapted Kreisel’s conjecture for `h is:

If, for all n 2 N, T `h '(n), then T ` 8x.'(x). [Adapted Kreisel’s Conjecture]

Theorem 4.2.1. The adapted Kreisel’s Conjecture for `h is false.

Proof. Let PrfT (x,y) be as in Chapter 2. Let h be the function defined by:

h(m) :=

8>>>>>><>>>>>>:

µk[k is the code of a proof of the formula coded by m in T ],

if m = ¬PrfT (n,p?q), for some n,

0, otherwise.

where µ denotes the minimization function (see [91, p. 833] for further details on mini-
mization). It is clear that h is a (total) recursive function. By construction, for all n 2 N,
T `h ¬PrfT (n,p?q). If the adapted Kreisel’s Conjecture for `h was true, it would fol-
low T ` 8x.¬PrfT (x,p?q), contradicting the Second Incompleteness Theorem (see [91,
p. 828]). a

It is not known whether the previous result still holds if one restricts oneself to
primitive-recursive functions (or any other proper class of the recursive functions).

The result is in accordance with [74], where several reasons are given to believe that
Kreisel’s Conjecture is, in fact, false.

Even though the adapted Kreisel’s Conjecture for `h is false, it is worth studying
variants and weakenings of it. For example, one could ask for an extension T

h of T such
that Kreisel’s Conjecture holds adapted to T

h: given a total recursive function h, if, for all
n 2 N, T `h '(n), then T

h ` 8x.'(x).
One immediate solution would be to add the true sentence 8x.'(x) as an axiom to T .

We, however, construct a theory T
h, avoiding the trivial a priori addition of 8x.'(x) as an

66



4.3. GENERAL FACTS ON BOUNDED NOTIONS OF PROVABILITY

axiom. The approach is of interest, since it allows to establish relations between di↵erent
concepts.

We also study versions of the conjecture for theories that satisfy certain derivability
conditions and, in a sense, we parametrize variants of the conjecture to the satisfiability
of the derivability conditions. We exhibit conditions for a theory to satisfy the following
implication:

T ` 8x.Ph
T
(p'( •x)q) =) T ` 8x.'(x).

This corresponds to an arithmetization of Kreisel’s Conjecture, where P
h

T
(·) represents

`h · inside T .
Finally, we prove, for certain theories, the existence of a total recursive function h

such that `k steps ✓ `h.

4.3 General Facts on Bounded Notions of Provability

In this section, we present two general results that express limitations of the use of
notions of provability. We say that ⌧ is a numeration of the axioms of T if ⌧ identifies
all the axioms of T ; we use Pr⌧ to denote the standard provability predicate (for ⌧). Pr⌧
plays the role of PrT , but here we decided to emphasize the considered numeration ⌧ (see
Chapter 5 for details).

Theorem 4.3.1. Let T be such that there are R0(x,y) a ⌃1(T )-formula, R1(x,y) a ⇧1(T )-
formula, and ⌧ a numeration of the axioms of T that satisfy:

1. For all formulas ', T ` Pr⌧(p'q)!9x.R0(p'q,x);

2. For all formulas ', T ` ¬Pr⌧(p'q)!8x.¬R1(p'q,x).

Then, there is ' such that T ` 9x.(R0(pPr⌧(p'q)q,x)^¬R1(p'q,x)).

Proof. Consider ' given by the Diagonalization Lemma [65, p. 15] such that

T ` '$9x.(R0(pPr⌧(p'q)q,x)^¬R1(p'q,x)).

It is clear that ' is a ⌃1(T )-formula, so1 T ` ' ! Pr⌧(p'q). Furthermore, from 1 and 2,
T ` Pr⌧(pPr⌧(p'q)q)^¬Pr⌧(p'q)! ', and so T ` Pr⌧(pPr⌧(p'q)q)^¬'! Pr⌧(p'q); this
fact together with what was concluded yields that T ` Pr⌧(pPr⌧(p'q)q)! Pr⌧(p'q). By
Löb’s Theorem, T ` Pr⌧(p'q), and so T ` ', as wanted. a

From the previous result, we conclude that if R0 and R1 are notions of provability with
the feature that T ` Pr⌧(p'q)$ 9x.Ri(p'q,x), with i = 0,1, then one can guarantee the
existence of ' such that T ` 9x.(R0(pPr⌧(p'q)q,x)^¬R1(p'q,x))—this formula expresses
that, for some parameter n, it is the case that N |= R0(pPr⌧(p'q)q,n), but N |= ¬R1(p'q,n).

1This step uses the internal ⌃1-completeness of T .
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In a more intuitive way, if one can uniformly represent two notions of provability in T

via standard provability predicates, then, for some parameter n, Pr⌧(p'q) will hold for
the first notion of provability with parameter n, but ' will not hold for the second; thus,
either the notions of provability are not representable in terms of standard provability
predicates, or one has the non-intuitive fact that Pr⌧(p'q) is “simpler” than ', for the
considered notions of provability; this notions can be, for instance, the syntactical repre-
sentation of k-provability (see Chapter 3 for further details on this notion of provability).

The next results are about limitations on the uniformity of theories with respect to
certain notions of provability.

Corollary 4.3.1. If there is a �1(T )-formula L(x,y) such that2:

1. For all formulas ' and all k, N |= L(p'q, k) if, and only if, T `k steps (symbols) ';

2. There is a numeration ⌧ of the axioms of T such that , for all formulas ', T ` Pr⌧(p'q)$
9x.L(p'q,x).

Then, there is a formula ' and k such that T `k steps (symbols) Pr⌧(p'q), but T �̀k steps (symbols) '.

Proof. From Theorem 4.3.1 by considering R0(x,y),R1(x,y) := L(x,y) we can guarantee the
existence of ' such that T ` 9x.(L(pPr⌧(p'q)q,x)^¬L(p'q,x)). So, there is k such that N |=
L(pPr⌧(p'q)q, k)^¬L(p'q, k), i.e. such that T `k steps (symbols) Pr⌧(p'q), but T �̀k steps (symbols)

'. a

Observe that such a formula L(x,y) in the conditions of the previous corollary con-
stitutes a notion of provability. The previous result states that if one can represent, in a
decidable way, the relation T `k steps ' inside T , then one must have the counter-intuitive
fact T `k steps Pr⌧(p'q), but T �̀k steps ', for certain k and '.

The next result shows that if k-provability is decidable in T , then T cannot have a
stronger version of Löb’s rule for k-provability.

Theorem 4.3.2. Suppose that k-provability can be expressed in T using a �1(T )-formula
L(x,y), i.e. T ` L(p'q, k) () T `k steps '. Then, the rule

L(p'q, k)! '

'

is not valid in T .

Proof. Consider any k. Using the Diagonalization Lemma [90, p. 169], one can guarantee
the existence of a formula ' such that

T ` '$ L(p'q, k)^¬L(p'q, k).

2The notation `k steps (symbols) is used to mention either `k steps or `k symbols.
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Clearly, ' is false, and so ¬L(p'q, k) is true, but as ¬L(p'q, k) is a ⌃1(T )-formula, from the
⌃1-completeness of T , one concludes that T ` ¬L(p'q, k). Hence, T ` ' $ L(p'q, k), in
particular T ` L(p'q, k)! '. If the rule was valid, it would follows that T ` ', i.e. T `?,
that would be a contradiction. a

4.4 On the notion `h
In this section, we study the notion `h and some of its properties. We start with a result
that guarantees that `h is representable in T .

Theorem 4.4.1. Given a total recursive function h, there is Ph
T
(·) that represents `h · in T

such that if, for all n 2 N, T `h ↵(n), then KT ` 8x.PhT (p↵(
•
x)q).

Proof. Let h be an arbitrary, but fixed total recursive function. We define fh by3:

fh(n) :=

8>>>>>><>>>>>>:

µm  h(n)[m is the code of a proof of the formula coded by n],

if n is a code of a formula and there is such an m,

0, otherwise.

fh is a total recursive function, thus fh can be strongly-representable4 by a formula
Rh(x,y) in T . Given n,m 2 N, it is clear that m  h(n) is the smallest code of a proof
of the formula coded by n if, and only if, T ` Rh(n,m) ^m 6= 0. Thus, we can define5

P
h

T
(x) := 9y 6= 0.Rh(x,y).
Assume that, for all n 2 N, T `h ↵(n). Let gh be the function defined by gh(n) :=

fh(#↵(n)). gh is a total recursive function. Furthermore, gh is strongly-representable by
the formula Sh(x,y) := Rh(p↵(

•
x)q, y) since:

(i) If gh(n) =m, then fh(#↵(n)) =m, and thus T ` Rh(p↵(n)q,m), i.e., T ` Sh(n,m);

(ii) As T ` 8x.9!y.Rh(x,y) it follows that T ` 8x.9!y.Rh(p↵(
•
x)q, y), i.e., T ` 8x.9!y.Sh(x,y).

By hypothesis, for all n 2 N, there is m  h(#↵(n)) such that m is the code of a proof of
↵(n) in T . Hence, for all n 2 N, gh(n) 6= 0. As Sh(x,y) strongly-represents gh, we have by
hypothesis that KT ` 8x.¬Sh(x,0). From T ` 8x.9!y.Sh(x,y) follows that T ` 8x.9y.Sh(x,y).
Together withKT ` 8x.¬Sh(x,0), it follows thatKT ` 8x.9y 6= 0.Sh(x,y), i.e., KT ` 8x.9y 6= 0.
Rh(p↵(

•
x)q, y). So, KT ` 8x.PhT (p↵(

•
x)q).

We now show that, for all formulas ', T `h ' () T ` Ph
T
(p'q). Suppose that

T `h '. For m := fh(#'), we have that m 6= 0. Thus, T ` Rh(p'q,m) ^m 6= 0, and so
T ` 9y 6= 0.Rh(p'q, y). Hence, T ` Ph

T
(p'q). Now suppose that T ` Ph

T
(p'q). Let m :=

fh(#'). If m 6= 0, then T `h '. Suppose, towards a contradiction, that m = 0. We

3We are assuming that the Gödel-numbers are defined in such a way that 0 is never the code of a proof.
4See Theorem 2.1.1.
5Keep in mind that Ph

T
is very distinct from PrT .
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have that T ` 9y 6= 0.Rh(p'q, y) and T ` Rh(p'q,0). As T ` 8x.9!y.Rh(x,y) we arrive at a
contradiction. So, m 6= 0, as desired. a

The next result follows immediately from the proof of the previous result.

Corollary 4.4.1. Given a total recursive function h and a formula ', we have that T `h
' () T ` Ph

T
(p'q).

P
h

T
is provably decidable, in the following sense:

Theorem 4.4.2. Given a total recursive function h, for every formula ', we have that T `
P
h

T
(p'q) or T ` ¬Ph

T
(p'q).

Proof. Suppose that T �̀P
h

T
(p'q). By the previous result, T��`h'. This means that fh(#') =

0. As Rh(x,y) strongly-represents the function fh, it follows that T ` Rh(p'q,0). Since
T ` 8x.9!y.Rh(x,y), we can conclude that T ` 8y.(Rh(p'q, y)! y = 0), and so, T ` ¬9y.(y 6=
0^Rh(p'q, y)), i.e., T ` ¬PhT (p'q). a

The next result corresponds to an arithmetization of the previous statement.

Theorem 4.4.3. Given a provability predicate P(x) and a total recursive function h, we have
for every formula ' that T ` P(pPh

T
(p'q)q)_P(p¬Ph

T
(p'q)q).

Proof. From Theorem 4.4.2, it follows T ` Ph
T
(p'q) or T ` ¬Ph

T
(p'q). If T ` Ph

T
(p'q),

then T ` P(pPh
T
(p'q)q), and so T ` P(pPh

T
(p'q)q)_ P(p¬Ph

T
(p'q)q). If T ` ¬Ph

T
(p'q), then

T ` P(p¬Ph
T
(p'q)q), hence T ` P(pPh

T
(p'q)q)_P(p¬Ph

T
(p'q)q). In sum, T ` P(pPh

T
(p'q)q)_

P(p¬Ph
T
(p'q)q). a

We now prove that there is no single h such that `h coincides with `.

Theorem 4.4.4. For every total recursive function h, there is a formula ' such that T ` ', but
T��`h '.

Proof. Let h be a fixed total recursive function. Let ' be the sentence obtained from the
application of the Diagonalization Lemma to the formula ¬Ph

T
(x). Then,

T ` '$ ¬Ph
T
(p'q). (I)

Suppose, towards a contradiction, that T `h '. So, T ` '. By Corollary 4.4.1 we have
that T ` Ph

T
(p'q), and so, by (I), T ` ¬', which contradicts T ` '. Hence, T��`h '. From

Theorem 4.4.2 it follows that T ` ¬Ph
T
(p'q), i.e., T ` '. a

The next fact will play a major role in the discussion of Kreisel’s Conjecture, and it is
similar to a reflection principle.

Theorem 4.4.5. Given a total recursive function h, for every formula ', T ` Ph
T
(p'q)! '.
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Proof. Let ' be an arbitrary formula. From Theorem 4.4.2, T ` Ph
T
(p'q) or T ` ¬Ph

T
(p'q).

Firstly, suppose that T ` Ph
T
(p'q). Then, by Corollary 4.4.1, we conclude T `h ', from

where we get T ` '. Thus, T ` Ph
T
(p'q)! '. Secondly, suppose that T ` ¬Ph

T
(p'q). Then,

by logic, T ` Ph
T
(p'q)! '. In all, T ` Ph

T
(p'q)! '. a

Theorem 4.4.6. Let h be a primitive-recursive function and P(x) be a provability predicate
such that:

C1: For all ⌃1(T )-formulas ', T ` '! P(p'q);

C2: For all formulas ' and  , T ` '$  =) T ` P(p'q)$ P(p q).

Then, for every formula ', T ` ¬P(p¬Ph
T
(p'q)q)! P

h

T
(p'q).

Proof. If h is primitive-recursive, then Rh(x,y) can be picked as being a ⌃1(T )-formula.
Clearly, T ` ¬Ph

T
(p'q) $ Rh(p'q,0). From C2, T ` P(p¬Ph

T
(p'q)q) $ P(pRh(p'q,0)q).

From C1, T ` Rh(p'q,0)! P(pRh(p'q,0)q), so T ` ¬Ph
T
(p'q)! P(p¬Ph

T
(p'q)q), as wanted.

a

Theorem 4.4.7. Given h a primitive-recursive function, for every formula ', T + ConT `
PrT (pPhT (p'q)q)! P

h

T
(p'q).

Proof. It is clear that T ` PrT (pPhT (p'q)q) ^ PrT (p¬PhT (p'q)q) ! PrT (p?q). Thus, T +
ConT ` PrT (pPhT (p'q)q) ^ PrT (p¬PhT (p'q)q) !?. Hence, T + ConT ` ¬PrT (pPhT (p'q)q) _
¬PrT (p¬PhT (p'q)q), i.e., T + ConT ` PrT (pPhT (p'q)q)! ¬PrT (p¬PhT (p'q)q). By the previous
result we conclude that T + ConT ` PrT (pPhT (p'q)q)! P

h

T
(p'q). a

4.5 Montagna’s conjecture

Löb’s Theorem [65, pp. 28, 29] expresses that, for all formulas ', if T ` PrT (p'q)! ',
then T ` '. More generally, for all formulas ',

T ` PrT (pPrT (p'q)! 'q)$ PrT (p'q).

If one analyzes the proof of Löb’s Theorem, it gives the impression that one can
prove PrT (p'q) ! ' only if one has already proved '. It indicates, moreover, that
PrT (pPrT (p'q) ! 'q) is only provable, if ' is established in the first place. This in-
tuition can be related to the problem proposed by Montagna in [18, p. 9] mentioned in
Section 4.2.

Theorem 4.5.1 (Negative Adapted Montagna’s Problem). For every primitive-recursive
function g(x,y) with g(x,y) > y, there are a sentence ' and a number n0 2 N such that T `h
PrT (pPrT (p'q)! 'q), but T��`h ', where h := �x.g(x,n0).
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Proof. We follow closely the proof of Theorem 14 from [65, p. 34]. Let g be a function-
symbol that represents the primitive-recursive function g . By the Diagonalization Lemma,
there is a sentence ' such that

T ` '$9y.(PrfT (pPrT (pPrT (p'q)! 'q)q, y)
^8z  g(p'q, y).¬PrfT (p'q, z)).

By construction, T + PrT (pPrT (pPrT (p'q)! 'q)q) +¬PrT (p'q) ` '. As T is ⌃1-complete,
T +' ` PrT (p'q). Thus, we can conclude that T +PrT (pPrT (pPrT (p'q)! 'q)q) ` PrT (p'q).
By Löb’s Theorem, it follows that T ` PrT (pPrT (pPrT (p'q)! 'q)q)$ PrT (pPrT (p'q)q).
Hence, T + PrT (pPrT (p'q)q) ` PrT (p'q). Again by Löb’s Theorem, it follows that T `
PrT (p'q), and consequently T ` ' and T ` PrT (pPrT (p'q)! 'q). This means that ' is
true. Let n0 satisfy the true existential property of '. Then, n0 is the code of a proof
of PrT (pPrT (p'q)! 'q). By hypothesis on g , it follows that n0 < g(#PrT (pPrT (p'q)!
'q),n0) = h(#PrT (pPrT (p'q)! 'q)), ergo T `h PrT (pPrT (p'q)! 'q). From the fact that
' is true one can conclude that for all z  g(#',n0), z is not the code of a proof of '. This
means that T��`h '. a

If a formula ' is provable in T , we define

k'k
T
:= min{n|n is the code of a proof of ' in T }.

Moreover, if ' and  are formulas, we stipulate that ' <T  if T ` '^ and k'k
T
< k k

T
.

The following result confirms that thementioned intuition that a proof of PrT (pPrT (p'q)!
'q) should encompass, in a way, a proof of ' fails.

Theorem 4.5.2. There is a formula ' such that

PrT (pPrT (p'q)! 'q) <T '.

Proof. By the Diagonalization Lemma, there is a sentence ' such that

T ` '$9y.(PrfT (pPrT (pPrT (p'q)! 'q)q, y)
^8z  y.¬PrfT (p'q, z)).

Applying the same reasoning as in the previous proof, it follows that T ` PrT (pPrT (p'q)!
'q)^'; in particular ' is true. Take n0 as being the natural number that is guaranteed to
exist from the true formula '. It is straightforward that kPrT (pPrT (p'q)! 'q)k

T
 n0. As

' is true, it follows that for all z  n0, z is not the code of a proof of '. Hence, n0 < k'kT ,
and so kPrT (pPrT (p'q)! 'q)k

T
< k'k

T
. In all, PrT (pPrT (p'q)! 'q) <T '. a

Theorem 4.5.3 (Negative Montagna’s Problem 1). There are an axiomatization of Peano
arithmetic in a Hilbert-style system, PAc, a formula ' of PAc, and k such that PAc `k steps

PrPAc
(p'q)! ', but PAc �̀k steps '.
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Proof. Consider the Hilbert-style axiomatization of Peano Arithmetic, PAc (c stands for
‘counter-example’), that is obtained from the usual one by replacing the usual axioms by
the following axioms6:

A’1. '! ( !  );

A’2. ('! ( ! µ))! (('!  )! ('! µ));

A’3. (¬'! ¬ )! ( ! ');

A’4. ('! ( ! µ))! ( ! ('! µ)).

Using the automated theorem prover ProverX7, we were able to confirm that the
previous set of axioms constitutes an alternative basis to the propositional axioms of the
usual axiomatization8. We used a technical trick to implement the desired formulas, since
ProverX works in first-order logic—we used P(x) to denote a meta-provability predicate,
imp(x,y) to denote implication and neg(x) to denote negation9:

formulas(assumptions).

P(x) & P(imp(x,y)) -> P(y). % Modus Ponens

P(imp(x,imp(y,y))). %A’1

P(imp(imp(x,imp(y,z)),imp(imp(x,y),imp(x,z)))). %A’2

P(imp(imp(neg(x),neg(y)),imp(y,x))). %A’3

P(imp(imp(x,imp(y,z)),imp(y,imp(x,z)))). %A’4

end_of_list.

formulas(goals).

P(imp(x,imp(y,x))).%A1%The other axioms are already satisfied.

end_of_list.

6One could also substitute, for instance, by the following list

A”1. '! ( !  );

A”2. ('! ( ! µ))! (('!  )! ('! µ));

A”3. (¬'! ¬ )! ( ! ');

A”4. '! ( ! ' ^ );
A”5. ' ^ ! ';

A”6. ' ^ !  ;

A”7. ('!  )! ((µ! ')! (µ!  )).

7ProverX is an extension of the automated theorem prover Prover9, see http://proverx.com for details.
8It is a basis in the sense that they generate the same provable formulas and that they are mutually

independent. This step is crucial; it is not enough to see that the new formula is simply provable in the
old system, it needs to generate all the same propositional theorems. ProverX, in particular Mace4, was
especially useful prove the independence of the axioms.

9It is not hard to find a proof without using ProverX.
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Take, for example, ' := (0 = 0! 0 = 0). We have that PrPAc
(p0 = 0! 0 = 0q)! (0 =

0! 0 = 0) is an A’1 axiom, but 0 = 0! 0 = 0 is not an axiom of PAc. This means that
PAc `0 steps PrPAc

(p0 = 0! 0 = 0q)! (0 = 0! 0 = 0), but PAc �̀0 steps 0 = 0! 0 = 0. a

Observe that the provability predicate played no role in the previous proof, this means
that we can immediately strengthen the former result.

Theorem 4.5.4 (Negative Montagna’s Problem 2). There are an axiomatization of Peano
Arithmetic in a Hilbert-style system, PAc, a formula ' of PAc, and k such that for all provability
predicates P, PAc `k steps P(p'q)! ', but PAc �̀k steps '.

Proof. The proof of this result is the same as the proof of the previous theorem when one
has in mind the previously made observation. a

For the two previous results we changed the axiomatization of the propositional part
of the usual axiomatization—this constituted a surprise to us because usually, in proof
theory, the axiomatization of the propositional part of first-order logic plays no role in
results about the considered theory. Those results presented a single counter-example,
the next results will present a uniform negative answer, in the sense that we will describe
families of axiomatizations of PA for which Montagna problem has a negative answer.

Theorem 4.5.5 (Negative Montagna’s Problem 3). Let PAc be an axiomatization of Peano
Arithmetic such that PAc �̀1 step 9x.9y.PrfPAc

(x,y) and that has the two following schemata as
axioms:

Axiom 1: ('! ¬ )! ( ! ¬');

Axiom 2: (8x.')! '
x

t
, where t is substitutable for x in '.

Then, there are a formula ' and k such that PAc `k steps PrPAc
(p'q)! ', but PAc �̀k steps '.

Proof. Consider ' := 9x.9y.PrfPAc
(x,y). It is clear that 8x.¬PrPAc

(x)! ¬PrPAc
(p'q) is an

Axiom2. Furthermore, (8x.¬PrPAc
(x)! ¬PrPAc

(p'q))! (PrPAc
(p'q)! ¬8x.¬PrPAc

(x)) is
an Axiom 1. Thus, we can conclude PAc `1 step PrPAc

(p'q)! ¬8x.¬PrPAc
(x), i.e. PAc `1 step

PrPAc
(p'q)! '. By hypothesis, PAc �̀1 step '. a

Theorem 4.5.6 (Negative Montagna’s Problem 4). Let PAc be an axiomatization of Peano
Arithmetic such that 9x.9y.PrfPAc

(x,y) is not an axiom, but such that it has the following
axiom schema:

Axiom 1: 'x

t
!9x.', where t is substitutable for x in '.

Then, there are a formula ' and k such that PAc `k steps PrPAc
(p'q)! ', but PAc �̀k steps '.

Proof. Similarly to what was done on the previous result, consider ' := 9x.9y.PrfPAc
(x,y).

In this case, PrPAc
(p'q)!9x.PrPAc

(x) is an Axiom 1. So, PAc `0 steps PrPAc
(p'q)! ', but

PAc �̀0 steps '. a
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4.6 Variants of Kreisel’s Conjecture

In this section, we present some partial results related to Kreisel’s Conjecture, namely
variants of the conjecture for provability predicates in the presence of di↵erent derivabil-
ity conditions. (For the next result T does not need to be r.e.)

Theorem 4.6.1. Let h be a primitive-recursive function and T be such that there is a provability
predicate P(x) satisfying:

C1: If '(x) is a ⌃n(T )-formula, then T ` '(x)! P(p'( •x)q);

C2: T ` Ph
T
(p'( •x)q)! P(p'( •x)q);

C3: For all formulas '(x) and  (x), T ` P(p'( •x)!  (
•
x)q)! (P(p'( •x)q)! P(p ( •x)q)).

If '(x) is a ⇧n(T )-formula such that T ` 8x.Ph
T
(p'( •x)q), then T + ConP ` 8x.'(x).

Proof. As '(x) is ⇧n(T ), by C1, we have T ` ¬'(x)! P(p¬'( •x)q). Thus, T ` 9x.¬'(x)!
9x.P(p¬'( •x)q). ByC2, T ` Ph

T
(p'( •x)q)! P(p'( •x)q). So, T ` 8x.Ph

T
(p'( •x)q)!8x.P(p'( •x)q).

So, T+8x.Ph
T
(p'( •x)q)^9x.¬'(x) ` 9x.P(p¬'( •x)q)^8x.P(p'( •x)q). ByC3, T+8x.Ph

T
(p'( •x)q)^

9x.¬'(x) ` P(p?q), i.e., T + ConP ` 8x.PhT (p'(
•
x)q)!8x.'(x). a

The condition T ` 8x.Ph
T
(p'( •x)q) corresponds to an arithmetization of the antecedent

of a version of Kreisel’s Conjecture. Thus, the result is weaker than Kreisel’s Conjecture.
If T ` ConP , then the previous result can be proved inside T . It is important to observe
that for n > 1 and T including Th⌃n

(N) (the set of the ⌃n-sentences that are true in N),
Proposition 2.4 of [55] shows that condition C1 can, in fact, be satisfied; despite this fact,
we are especially interested in the ⌃1-case, due to its connection to r.e. theories.

The next result is a particular case of the previous theorem.

Corollary 4.6.1. Let h be a primitive-recursive function. If '(x) is a ⇧1(PA)-formula such
that T ` 8x.Ph

PA(p'(
•
x)q), then PA+ ConPA ` 8x.'(x).

Proof. The Corollary follows immediately from the fact that PrPA satisfies C1 and C2 of
the previous Theorem [62]. a

Theorem 4.6.2. Let h be a primitive-recursive function and T be such that there is a provability
predicate P(x) satisfying:

C1: For all formulas '(x), T ` P(p¬'( •x)q)! P(p¬Ph
T
(p'(:x)q)q);

C2: If '(x) is a ⌃n(T )-formula, then T ` '(x)! P(p'( •x)q);

C3: For all formulas '(x) and  (x), T ` P(p'( •x)!  (
•
x)q)! (P(p'( •x)q)! P(p ( •x)q)).

If '(x) is a ⇧n(T )-formula such that T ` 8x.Ph
T
(p'( •x)q), then T + ConP ` 8x.'(x).
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Proof. As ¬'(x) is ⌃n(T ), by C2 T ` ¬'(x)! P(p¬'( •x)q). Thus, T ` ¬P(p¬'( •x)q)! '(x).

By C3, we have that T +P(pPh
T
(p'(:x)q)q)^P(p¬Ph

T
(p'(:x)q)q) ` P(p?q), since ¬' := '!?.

Hence, T +ConP ` P(pPhT (p'(
:
x)q)q)! ¬P(p¬Ph

T
(p'(:x)q)q). Together withC1we get that T +

ConP ` P(pPhT (p'(
:
x)q)q)! ¬P(p¬'( •x)q), but, by what was previously concluded, one gets

that T +ConP ` P(pPhT (p'(
:
x)q)q)! '(x). Suppose that T ` 8x.Ph

T
(p'( •x)q). As h is primitive-

recursive, we have that Ph
T
(x) is ⌃1(T ). Ergo, by C2, T ` Ph

T
(p'( •x)q)! P(pPh

T
(p'(:x)q)q). By

assumption, it follows that T ` 8x.P(pPh
T
(p'(:x)q)q), therefore, T ` 8x.'(x). a

In the next result, we drop the assumption that h is primitive-recursive10, but we need
to strengthen condition C1.

Theorem 4.6.3. Let T be such that there is a provability predicate P(x) satisfying:

C1: For all formulas '(x), T ` Ph
T
(p'( •x)q)! P(p'( •x)q);

C2: If '(x) is a ⌃n(T )-formula, then T ` '(x)! P(p'( •x)q);

C3: For all formulas '(x) and  (x), T ` P(p'( •x)!  (
•
x)q)! (P(p'( •x)q)! P(p ( •x)q)).

If '(x) is a ⇧n(T )-formula such that T ` 8x.Ph
T
(p'( •x)q), then T + ConP ` 8x.'(x).

Proof. As '(x) is ⇧n(T ), by C2, T ` 9x.¬'(x)! 9x.P(p¬'( •x)q). As T ` 8x.Ph
T
(p'( •x)q), it

follows, by C1, that T ` 8x.P(p'( •x)q). This, together with the fact that T + 9x.¬'(x) `
9x.P(p¬'( •x)q), yields T + 9x.¬'(x) ` 9x.P(p¬'( •x)q) ^ P(p'( •x)q). As ¬' := ' ! ?, it
follows by C3 that T +9x.¬'(x) ` 9x.P(p?q), i.e., T +9x.¬'(x) ` P(p?q). Hence, T +ConP `
8x.'(x). a

Corollary 4.6.2. Let T be such that there is a provability predicate P(x) satisfying:

C1: For all formulas '(x), T ` Ph
T
(p'( •x)q)! P(p'( •x)q);

C2: If '(x) is a ⌃1(T )-formula, then T ` '(x)! P(p'( •x)q);

C3: For all formulas '(x) and  (x), T ` P(p'( •x)!  (
•
x)q)! (P(p'( •x)q)! P(p ( •x)q));

C4: T ` ConP .

If '(x) is a ⇧1(T )-formula such that T ` 8x.Ph
T
(p'( •x)q), then T ` 8x.'(x).

Proof. Follows immediately from the previous Theorem. a

By [61] and [33], there is a provability predicate that satisfies C2, C3, and C4 of the
previous Theorem. Furthermore, if P(x) is a provability predicate that satisfies C2 and
C4, then P

0(x) := P
h

T
(x) _ P(x) is a provability predicate that satisfies C1, C2, and C4.

10And so P
h

T
is not necessarily ⌃1.
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For this reason, we believe that any su�ciently strong theory T satisfies all the previous
conditions.

Using the theory KT we can go even further:

Corollary 4.6.3. Let T be a theory in the conditions of the previous result. If '(x) is a ⇧1(T )-
formula such that, for all n 2 N, T `h '(n), then KT ` 8x.'(x).

Proof. By the proof of Corollary 4.6.2, it can be concluded that T ` 8x.Ph
T
(p'( •x)q) !

8x.'(x). Thus, the result follows from Theorem 4.4.1. a

A result similar to Theorem 4.6.3 for some ⌃-formulas, holds in the presence of the
stronger schema !Conn

P
:

P(p9x.'(x, •y)q)!9x.¬P(p¬'( •x, •y)q), '(x) is a ⇧n(T )-formula.

Theorem 4.6.4. Let T be such that there is a provability predicate P(x) satisfying:

C1: For all formulas '(x), T ` Ph
T
(p'( •x)q)! P(p'( •x)q);

C2: For all ⌃n(T )-formulas '(x,y), T ` '(x,y)! P(p'( •x, •y)q).

Suppose that '(x) is a ⇧n(T )-formula. If T ` 8y.Ph
T
(p9x.'(x, •y)q), then we have T +!Conn

P
`

8y.9x.'(x,y).

Proof. Suppose that T ` 8y.Ph
T
(p9x.'(x, •y)q). By C1, we have T ` 8y.P(p9x.'(x, •y)q).

Hence, T +!Conn
P
` 8y.9x.¬P(p¬'( •x, •y)q), i.e., T +!Conn

P
` ¬9y.8x.P(p¬'( •x, •y)q). Further-

more, by C2, we have T + 9y.8x.¬'(x,y) ` 9y.8x.P(p¬'( •x, •y)q). Therefore, T +!Conn
P
`

¬9y.8x.¬'(x,y), and so, T +!Conn
P
` 8y.9x.'(x,y). a

If T ` !Conn
P
, then everything is provable in T . We can yet get a stronger result, but,

like before, we need a stronger schema. Let !Con3,n
P

be the following schema:

P(p9y.'( •x,y, •z)q)!9y.¬P(p¬'( •x, •y, •z)q), '(x) is a ⇧n(T )-formula.

Theorem 4.6.5. Let T be such that there is a provability predicate P(x) satisfying:

C1: For all formulas '(x), T ` Ph
T
(p'( •x)q)! P(p'( •x)q);

C2: For all ⇧n(T )-formulas '(x,y,z), T ` P(p8x.9y.'(x,y, •z)q)!8x.P(p9y.'( •x,y, •z)q);

C3: For all ⌃n(T )-formulas '(x,y,z), T ` '(x,y,z)! P(p'( •x, •y, •z)q).

Suppose that '(x) is a ⇧n(T )-formula. If T ` 8z.Ph
T
(p8x.9y.'(x,y, •z)q), then T +!Con3,n

P
`

8z.8x.9y.'(x,y,z).

Proof. T + 8z.Ph
T
(p8x.9y.'(x,y, •z)q) ` 8z.P(p8x.9y.'(x,y, •z)q), by C1. From C2, we ob-

tain T +8z.Ph
T
(p8x.9y.'(x,y, •z)q) ` 8z.8x.P(p9y.'( •x,y, •z)q). This means that T +!Con3,n

P
`

8z.8x.9y.¬P(p¬'( •x, •y, •z)q), i.e., T +!Con3,n
P
` ¬9z.9x.8y.P(p¬'( •x, •y, •z)q). As '(x,y,z) is

⇧n(T ), byC3, T +9z.9x.8y.¬'(x,y,z) ` 9z.9x.8y.P(p¬'( •x, •y, •z)q). Altogether, T +!Con3,n
P
`

¬9z.9x.8y.¬'(x,y,z). a
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By Theorem 4.4.5, we have that the Local Reflection Principle (see [91, p. 845]) of
P
h

T
(x) is provable in T , i.e., T ` Ph

T
(p'q)! '. In fact, we have the following result.

Theorem 4.6.6. Suppose that h is primitive-recursive. Let T be such that there is a provability
predicate P(x) satisfying:

C1: For all formulas '(x), T ` Ph
T
(p'( •x)q)! P(p'( •x)q);

C2: For all ⌃1(T )-formulas '(x), T ` '(x)! P(p'( •x)q);

C3: For all formulas '(x) and  (x), T ` P(p'( •x)!  (
•
x)q)! (P(p'( •x)q)! P(p ( •x)q));

C4: T ` ConP ;

C5: For all formulas '(x), T ` '(x) =) T ` P(p'( •x)q).

Then, T ` 8x.P(pPh
T
(p'(:x)q)! '(

•
x)q).

Proof. As h is primitive-recursive, we know that Ph
T
(x) and ¬Ph

T
(x) are ⌃1(T )-formulas. By

C2, T ` Ph
T
(p'( •x)q)! P(pPh

T
(p'(:x)q)q), so T ` ¬P(pPh

T
(p'(:x)q)q)! ¬Ph

T
(p'( •x)q). It holds

that T ` ¬Ph
T
(p'( •x)q)! P(p¬Ph

T
(p'(:x)q)q). So, T ` ¬P(pPh

T
(p'(:x)q)q)! P(p¬Ph

T
(p'(:x)q)q),

i.e., T ` P(pPh
T
(p'(:x)q)q)_P(p¬Ph

T
(p'(:x)q)q).

From logic, T ` ¬Ph
T
(p'( •x)q)! (Ph

T
(p'( •x)q)! '(x)). So, by C5, T ` P(p¬Ph

T
(p'(:x)q)!

(Ph
T
(p'(:x)q)! '(

•
x))q), thus, by C3, T ` P(p¬Ph

T
(p'(:x)q)q)! P(pPh

T
(p'(:x)q)! '(

•
x)q).

From C1, T +¬P(p'( •x)q) ` ¬Ph
T
(p'( •x)q). By C2, T +¬P(p'( •x)q) ` P(p¬Ph

T
(p'(:x)q)q).

Ergowe have T+P(pPh
T
(p'(:x)q)q)+¬P(p'( •x)q) ` P(p¬Ph

T
(p'(:x)q)q)^P(pPh

T
(p'(:x)q)q). From

C3 andC4, it follows that T +P(pPh
T
(p'(:x)q)q)+¬P(p'( •x)q) `?, i.e., T ` P(pPh

T
(p'(:x)q)q)!

P(p'( •x)q). From logic, T ` '(x)! (Ph
T
(p'( •x)q)! '(x)); so, byC5 andC3, T ` P(p'( •x)q)!

P(pPh
T
(p'(:x)q)! '(

•
x)q). Hence, T ` P(pPh

T
(p'(:x)q)q)! P(pPh

T
(p'(:x)q)! '(

•
x)q).

So we have T ` P(pPh
T
(p'(:x)q)q)_P(p¬Ph

T
(p'(:x)q)q) and also T ` P(p¬Ph

T
(p'(:x)q)q)!

P(pPh
T
(p'(:x)q)! '(

•
x)q). From before, we have T ` P(pPh

T
(p'(:x)q)q)! P(pPh

T
(p'(:x)q)!

'(
•
x)q), and thus the result follows. a

Inspired by the previous fact, one can consider the uniform reflection principle schema,
RFNh(T ), for the provability notion P

h

T
(x) (see [91, p. 845]):

8x.(Ph
T
(p'( •x)q)! '(x)), '(x) has only x free.

With � being an arbitrary class of formulas (for example ⌃n, ⇧n, or even �n), we denote
by RFNh

�(T ) the previous schema restricted to �-formulas and define T h

� := KT +RFNh

�(T ).
There is a deep relation between !-consistency and reflection principles [91, p. 853]:
Restrictions to⇧-formulas of the uniform reflexion principle for the standard provability
predicate are equivalent to restrictions of the schema !Conn

Pr
from above to ⌃-formulas.

78



4.7. ON `k steps AND `h

Note that we are adding !-consistency and not !-completeness, hence Kreisel’s Conjec-
ture—which follows immediate from !-completeness—is not being trivialized.

Now we presented another adapted version of Kreisel’s Conjecture.

Theorem 4.6.7. Let h be a total recursive function and '(x) be a �-formula such that, for all
n 2 N, T `h '(n). Then, T h

� ` 8x.'(x).

Proof. Let h be a total recursive function and '(x) be a �-formula such that, for all n 2 N,
PA `h '(n). By Theorem 4.4.1, we have that KT ` 8x.PhT (p'(

•
x)q). Thus, by RFNh

�(T ), it
follows that T h

� ` 8x.'(x). a

Note that there are no particular reasons to believe that the theory KT is e↵ectively
axiomatisable. This is something worth studying.

Furthermore, one could consider a modal logic with modalities ⇤ (interpreted by
PrPA(·)) and ⇤h (with P

h

T
(·) as an intended interpretation) and, at least, the usual axioms

of ⇤ and the properties of Ph
T
(·). For example, as modal versions of the Theorems 4.4.3,

4.4.5, and 4.4.6, one could add the following axioms:

Ax.1 (⇤⇤hA)_ (⇤¬⇤hA);

Ax.2 ⇤hA! A;

Ax.3 ¬⇤¬⇤hA!⇤hA.

4.7 On `k steps and `h
From [18, p. 8], we know the following fact:

Theorem 4.7.1. If T is a finitely axiomatized theory, then there is a total recursive function
f (k,#') such that

T `k steps ' =) T `f (k,#') symbols '.

With this Theorem, one can establish a relation between `k steps and `h.

Theorem 4.7.2. Given k, if T is a finitely axiomatized theory, then the function

gk(#') :=

8>>><>>>:

1, T `k steps '

0, otherwise

is recursive.

Proof. Let k be fixed. We will intuitively describe the algorithm that computes the func-
tion gk . Consider the input #'. Compute, by Theorem 4.7.1, f (k,#'). If ' is provable
with at most k steps, then it must be provable using at most f (k,#') symbols. In such a hy-
pothetical proof, clearly there are, at most, f (k,#') di↵erent variables. Furthermore, the

79



CHAPTER 4. MONTAGNA’S PROBLEM AND KREISEL’S CONJECTURE

variables, besides the ones that occur in ', can be arbitrarily chosen, i.e., if one performs
a change of variables in the proof without changing the variables occurring in ', one
maintains the soundness of the proof and the number of steps in it. This means that one
can consider a finite set of variables consisting of: the variables in ' and f (k,#') other
variables. Then, the algorithm considers all possible finite strings constructed using the
finite set consisting of: the logical connectives, quantifiers, parenthesis, a blank symbol
(to separate the steps in a proof), and the variables of the finite set that was mentioned. By
vanishing over all the (finite) possible strings with at most f (k,#)-symbols, the algorithm
tests if any of them is a proof of ' with at most k steps. If there is any, it outputs 1,
otherwise it ought to output 0. Thus, the algorithm outputs 1 exactly when ' is provable
with at most k steps. a

Theorem 4.7.3. Given k, if T is a finitely axiomatized theory, then there is a total recursive
function hk such that

T `k steps ' =) T `hk '.

Proof. Let gk be as in Theorem 4.7.2. It is immediate that the function

hk(n) :=

8>>>>>><>>>>>>:

m, if gk(n) = 1 and m is the smallest code of a proof of the

formula coded by n with at most k steps,

0, otherwise

is total recursive. We show that T `k steps ' =) T `hk '. If T `k steps ', then gk(#') = 1
and so hk(#') is the code of a proof of ' with at most k steps; by definition, T `hk '. a

There are two immediate consequences of the previous result.

Corollary 4.7.1. Suppose that T is a finitely axiomatized theory satisfying the conditions
of Corollary 4.6.3 for the function hk and that '(x) is a ⇧1(T )-formula. If for all n 2 N,
T `k steps '(n), then KT ` 8x.'(x).

Proof. Follows from the previous Theorem and from Corollary 4.6.3. a

Corollary 4.7.2. Suppose that T is a finitely axiomatized theory and that '(x) be a �-formula.
If, for all n 2 N, T `k steps '(n), then T

hk

� ` 8x.'(x).

Proof. Follows from Theorems 4.7.3 and 4.6.7. a

We finish with an open problem.

Problem. Is there a total recursive function h such that, for all formulas ', PA `k steps ' =)
PA `h '?
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4.8 Conclusion

Kreisel’s Conjecture is a fundamental problem of k-steps-provability. As mentioned in
the introduction, there are some solutions under specific conditions. Usually they rely
on properties of the considered formulas or properties of the theory. In this chapter, we
presented a novel approach to the conjecture, where we abstracted from the concrete
formalization.

We introduced a notion of provability `h expressing that T `h ' holds if there is
a proof of ' in T whose code is at most h(#'). This is clearly an intensional notion.
We studied the representation of `h inside the theory T using the formula P

h

T
(x) and

several of its properties. Montagna’s conjecture (“Does PA `k steps PrPA(p'q)! ' imply
PA `k steps '?”) was analyzed for the notion `h.

We also considered variants of Kreisel’s Conjecture for provability predicates with
di↵erent derivability conditions. From the results, we like to highlight Theorem 5.4 that,
using a form of !-consistency (!Conn

P
) and under certain derivability conditions, allows

to conclude T +!Conn
P
` 8y.9x.'(x,y) from T ` 8y.Ph

T
(p9x.'(x, •y)q).

The chapter finishes with connections between `k steps and `h, in particular, two
forms of Kreisel’s Conjecture for `h (Corollaries 6.1 and 6.2).
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5
Numeral Completeness

PART A: The Mathematical Results

5.1 Introduction

Numeralwise representability [91, p. 838] is a standard notion in proof theory. It leads to
studies on (numeral forms of) completeness and consistency, as [33], [97], and [62]. For
significant results on partial consistency statements, we refer the reader to [76], [77], [12],
[59], and [57].

In this chapter, we study numeral forms of completeness and consistency for weak
theories of arithmetic, like the theory S12 of bounded arithmetic and the elementary arith-
metic EA—see [10], [39], and [44] for details on these theories.

Notions like proof and provability (with respect to a numeration ⌧) are formalized via
predicates Prf and Pr⌧ introduced in Section 5.2. In Section 5.3, we prove numeral forms
of completeness and provable consistency. These results are proved for the theories S12
and EA, based on derivability conditions established in the preceding section. Numeral
Completeness (see Theorem 5.3.1), states that whenever one is given a true sentence
~Q ~x .'(~x ), with '(~x ) a ⌃b

1(S
1
2)-formula, one is able to construct a provability predicate

Pr⌧ such that S12 ` ~Q ~x .Pr⌧(p'(
•
~x )q). This fact, in an intuitive setting, expresses that the

fact that ~Q ~x .'(~x ) is true can be instance-wise (using numerals) captured in S12 using the
constructed numeration ⌧. We improve this result (c.f. Proposition 5.3.1) to the general
case of sentences that might not be true, but we can no longer guarantee that Pr⌧ is a
provability predicate (in fact, we cannot guarantee that Pr⌧ defines T -provability in N).

In Section 5.4, we study the derivability condition stating “provability implies prov-
able provability”. Firstly, we confirm that, for T not necessarily satisfying the mentioned
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derivability condition, G2 still holds1, see Theorem 5.4.3. Secondly, using Numeral Com-
pleteness, we construct a provability predicate Pr⌧ such that weak theories T prove the
previously mentioned derivability condition, id est T ` Pr⌧(x)! Pr⌧(pPr⌧(

•
x)q), for a cer-

tain constructed ⌧. These are clearly distinct results: the first one shows that G2 does not
need the mentioned condition, the second one presents a particular case for which the
condition holds; these are not conflicting goals. We also explore the derivability condi-
tions needed to state our result on numeral completeness—we show that an internal form
of ⌃-completeness (⌃b

1 or ⌃1-completeness) is not needed.
In addition to what we mentioned, in Section 5.5, we present characterizations of the

provability predicates that satisfy our forms of provable completeness and consistency:
in a sense to be made precise in the mentioned section, they are exactly the provability
predicates whose consistency statements imply the considered sentence.

In Section 5.6, we study representability of function computing proofs, in particular
proofs of partial consistency statements. We confirm that Numeral Completeness can be
used to improve a known result (see Corollary 5.6.1). Finally, in Section 5.7, as a side
remark to what was done in the preceding section, we study bounded notions of provability,
i.e. formulas B(x,y) such that T ` ' () 9n 2 N.T ` B(p'q,n). We exhibit bounded

notions of provability, T
k steps · and T

n ·, and we present a general negative result for
them.

5.2 Preliminaries

Throughout this chapter, S and T stand for consistent and recursively enumerable (r.e.)
theories of arithmetic that are extensions of S12; S and T , unless otherwise mentioned, are
not necessarily sound, i.e. N |= S,T does not need to occur. Moreover, S12 and EA serve
interchangeably as basis to our investigations.

5.2.1 Notation and definitions

Given a class of formulas �, an 9�-formula is a formula of the form 9~x .'(~x ,~y ), where
'(~x ,~y ) is a �-formula; a similar definition is assumed for 8�-formulas; the classes ⌃n

and all standard notation are taken from [39, pp. 13–18, 62]. ~Q abbreviates an arbitrary
sequence of quantifiers. We say that T is �-sound if, for every �-formula ', whenever
we have T ` ', we also have N |= ' (see [56] for necessary and su�cient conditions for
⌃n-sounds and, besides that paper, see also [82] for an account of Incompleteness for
⌃n-sound theories).

We use the e�cient numerals of bounded arithmetic [10, p. 29], the corresponding se-
quence functions and pairing functions [10, p. 48], and all the metamathematical notions
from [10]. We adopt the notation #' for the Gödel-number of the formula ' (we consider

1See [102] for further recent results on G2, and [99] for an exploration of G2 without the need for
arithmetization “as a hidden parameter”.
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a fixed feasible way of coding), we set p'q := #' for the numeral of the Gödel-number

of ', and we use Feferman’s dot notation p'(
•
~x )q (see [91, p. 837] and [10, p. 135]) to

formalize numeral instantiation: this notation uses num, representing in S12 the function
n 7! #n that associates with each n the Gödel-number of the numeral n, it involves also
the internal substitution function sub that satisfies S12 ` sub(p'q,ptq) = p'(t)q, for each
formula ' and each term t, and can be defined by p'( •x)q := sub(p'q,num(x)). Intuitively
speaking, p'( •x)q represents the formula p'q instantiated by the numeral of x; thus, Fefer-
man’s dot notation allows to represent instances of formulas by natural numbers inside a
theory of (bounded) arithmetic.

We also consider •¬ such that S12 `
•¬p'q = p¬'q, and similarly for the other connec-

tives, namely S12 ` p'q
•! p q = p' !  q. As usual, S12 ` 0 �• 1 = 0, and for n � 1,

S12 ` n �• 1 = n� 1 (see [10, pp. 36, 42]); Sq is a �b

1-formula representing sequences in S12;
Fm is a �b

1-formula representing formulas; and L is a function-symbol representing the
length of a sequence.

Consider the following well-established definitions:

Definition 5.2.1.

1. Prf (x,y) is a proof predicate (for T ) when S12 ` Prf (n,m) if, and only if, m is (the code of)
a T -proof of the formula (whose code is) n;

2. P(x) is a provability predicate (for T over S) if S ` P(n) holds exactly when n is (the code
of) a T -provable formula2;

3. A theory T is numerated by a formula ⌧(v) in S if the set S⌧ := {n 2 N|S ` ⌧(n)} coincides
with the set of all (codes of) axioms (of some axiomatization) of T ;

4. Given a theory T numerated by formulas ✓ and ⌧ in S , ✓ is included in ⌧ if S ` ✓! ⌧.

In the case of item 3 above, we also say that ⌧ is a numeration of T in S , or that ⌧
numerates T in S . Let us introduce predicates for proof and provability with respect to a
considered numeration.

Definition 5.2.2 (Standard predicates). Given a numeration ⌧:

1. The standard proof predicate for ⌧ is

Prf⌧(x,y) :=Sq(y)^¬L(y) = 0^ (8u < L(y).Fm((y)
u
)^

(⌧((y)
u
)_9v < u.9w < u.(y)

v
= (y)

w

•! (y)
u
))

^ x = (y)
L(y)�• 1;

2. The standard provability predicate for ⌧ is Pr⌧(x) := 9y.Prf⌧(x,y).
2This corresponds to Kreisel’s condition from [102].
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We define the standard proof predicate, for a numeration ⌧, as Feferman did in [33].
However, Feferman emphasized the logical axioms using another formula, let us say
LAxiom. In our work, the logical axioms are codified in ⌧, videlicet LAxiom is included in
each considered ⌧. It is important to observe that whenever ⌧ defines the T -axioms in N,
then Pr⌧ is a provability predicate (this assertion assumes soundness of the basis theory);
as we are going to see in Proposition 5.3.1, there are numerations ⌧ of the axioms of T
such that Pr⌧ is no longer guaranteed to be a provability predicate.

Definition 5.2.3. Let � be a set of formulas.

1. �(T ) is the set of formulas that are T -provably equivalent to some formula in �;

2. �-numeration is a numeration by a formula in �;

3. A theory T is �-definable in S if there is a �-numeration of T in S .

5.2.2 Derivability conditions

We summarize some results, concerning derivability conditions, that are relevant to our
work.

Fact 5.2.1. (A) Derivability conditions for S12: The following conditions
hold when there is ✓ a �b

1(S
1
2)-numeration of T in S12 included in ⌧:

C1. If T ` '(~x ), then S12 ` Pr⌧(p'(
•
~x )q);

C2. S12 ` Pr⌧(p'(
•
~x )!  (

•
~x )q)! (Pr⌧(p'(

•
~x )q)! Pr⌧(p (

•
~x )q));

C3. For all ⌃b

1(S
1
2)-formulas '(~x ), S12 ` '(~x )! Pr⌧(p'(

•
~x )q);

C4. S12 ` ⌧(x)! Pr⌧(x);

C5. If S12 ` (8x.⇠(x)! ⌧(x))! (8x.Pr⇠ (x)! Pr⌧(x)).

(B) Derivability conditions for EA: The following conditions hold when there is ✓ a⌃1(EA)-
numeration of T in EA included in ⌧: conditions C1–C5 above, with ‘⌃b

1’ and ‘S12’
replaced by ‘⌃1’ and ‘EA’, respectively.

We focus on (A) to briefly explain why the conditions hold. For more details we
recommend [10, pp. 133–149], [11, pp. 117, 118], [33], [65, p. 14], [62], [42], and [63].

C1 follows from the ⌃b

1-completeness of S12 (conferatur [10, p. 135]) and the fact that
Pr⌧ commutes with universal quantifications.

C2 follows from the definition of Prf⌧ and from the fact that concatenation of arbitrary
sequences is defined in S12.

A proof of condition C3 can be found in [10, pp. 135–141]; there, Buss proves it for a
proof predicate whose underlying system is a Gentzen-style proof system. Despite here
Prf⌧ is being defined for a Hilbert-style notion of proof [33], this does not constitute a
problem because one can reconstruct Buss’s proof with small changes for our Hilbert-style
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formulation; alternatively, one could simply translate, internally in S12, Buss’s Gentzen
system to Feferman’s Hilbert-style system—this approach works because one can make
such a translation in a polynomially bounded way, see Theorem 5.5.1.a from [21] for
further details3. It is worth mentioning that the condition (B) C3 is very sensitive to
the formulas one considers to be ⌃1-related: in Remark 6.17 of [98], Visser presented a
numeration � of EA and a ⌃1,1-sentence such that the condition fails4.

C4 is immediate from the fact that the function n 7! hni is defined in S12.
Finally, C5 is obtainable from logic alone.

5.3 Numeral Completeness and Consistency

Recall that T stands for a consistent r.e. theory extending S12.

5.3.1 Numeral Completeness

Theorem 5.3.1 (Numeral Completeness of S12). Given a �b

1(S
1
2)-definable theory T (in S12),

for every true sentence ~Q ~x .'(~x ), with '(~x ) a ⌃b

1(S
1
2)-formula, there is a numeration ⌧ of T in

S12 such that Pr⌧ is a provability predicate for T in S12 and S12 ` ~Q ~x .Pr⌧(p'(
•
~x )q).

Informally, from the true sentence ~Q ~x .'(~x ), one is able to prove the sentence ~Q ~x .

Pr⌧(p'(
•
~x )q), a sentence that expresses, under the scope of ~Q ~x , that S12 can prove that

'(~x ) is provable in T , and consequently true (this is why this result constitutes a form of
provable numeral completeness). The numerals correspond to a formal counter-part of the
natural numbers; if one establishes a result for numerals, one has the guarantee that it
holds for natural numbers; this entails that, in a sense, the previously mentioned result
guarantees that if ~Q ~x .'(~x ) is true, then this fact is provable instance-wise in S12 for each
numeral (for a suitable numeration ⌧). This fact has a similar flavour to the outside big,
inside small principle from Theorem 2.1 of [52] that states “T ` 8x T x 2 I”, where I is a
T -cut, and ‘ T ’ denotes provability in T (for some fixed �0(T )-definition of the axioms).

Proof. (of the Numeral Completeness of S12) T is �b

1(S
1
2)-definable, thus there is a �

b

1(S
1
2)-

formula  (v) such that  numerates T in S12. Define

⌧(v) :=  (v)_¬( ~Q ~x .'(~x )).

To prove that ⌧(v) is a numeration of T in S12, it su�ces to show that, for all n 2 N,
S12 `  (n) () S12 ` ⌧(n). The implication [ =) ] is immediate. Let us prove the converse
direction. Assume S12 ` ⌧(n). Then, using the soundness of S12, N |= ⌧(n), i.e. N |=  (n)_

3One can find strengthenings of this result in [22], [59], and [9].
4We recall that the class ⌃1,0 consists of the formulas of the form 9~x .S0(~x ,~y ), with S0 a �0-formula; the

class ⌃1,n+1 consists of the formulas 9~x .8~y < ~t .S0(~x ,~y ), where S0 is ⌃1,n, see [101]. Before, 8~y < ~t stands
for 8y0 < t0. · · ·8yn�1 < tn�1. As Visser observed in [98], this means that, in EA, there are ⌃1,1-sentences that
are not equivalent to ⌃1-sentences.
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¬( ~Q ~x .'(~x )). As, by assumption, N |= ~Q ~x .'(~x ), it follows that N |=  (n). As S12 is ⌃b

1-
complete and  is �b

1(S
1
2), we get that S12 `  (n).

 is a �b

1(S
1
2)-numeration of T included in ⌧, so the derivability conditions of Fact

5.2.1(A) hold. To show that S12 ` ~Q ~x .Pr⌧(p'(
•
~x )q), one uses the conditions C1–C4: (i)

C4 states that S12 ` ⌧(x)! Pr⌧(x), consequently S12 ` ¬Pr⌧(p?q)! ¬⌧(p?q). Hence, S12 +
¬Pr⌧(p?q) ` ¬ (p?q)^ ~Q ~x .'(~x ), so S12 +¬Pr⌧(p?q) ` ~Q ~x .'(~x ). Thus, S12 ` ¬Pr⌧(p?q)!
~Q ~x .'(~x ); (ii) From logic, S12 `?! '(~x ), thus from C1 and C2, we therefore conclude

S12 ` Pr⌧(p?q) ! Pr⌧(p'(
•
~x )q). Using (i), S12 ` ¬( ~Q ~x .'(~x )) ! Pr⌧(p'(

•
~x )q). Hence, S12 `

¬( ~Q ~x .'(~x )) ! ~Q ~x .Pr⌧(p'(
•
~x )q); (iii) As '(~x ) is a ⌃b

1(S
1
2)-formula, from C3, we have

S12 ` '(~x )! Pr⌧(p'(
•
~x )q). So, from logic, S12 ` ~Q ~x .'(~x )! ~Q ~x .Pr⌧(p'(

•
~x )q); Finally, from

(ii) and (iii), S12 ` ¬( ~Q ~x .'(~x ))_ ( ~Q ~x .'(~x ))! ~Q ~x .Pr⌧(p'(
•
~x )q), ergo S12 ` ~Q ~x .Pr⌧(p'(

•
~x )q).

It is easy to see that Pr⌧ defines T -provability in N, since ⌧ defines the T -axioms in N,
and consequently Pr⌧ is a provability predicate (this assertion requires the soundness of
S12). a

It is important to emphasize that we guarantee a numeration for each sentence, but
there is no single numeration for all sentences, otherwise truth would be recursively
enumerable. We state an adapted version of the previous Theorem for EA.

Theorem 5.3.2 (Numeral Completeness of EA). Given a theory T , for every true sentence of
the form ~Q ~x .'(~x ), with '(~x ) a ⌃1(EA)-formula, there is a numeration ⌧ of T in EA such that

Pr⌧ is a provability predicate for T in EA and EA ` ~Q ~x .Pr⌧(p'(
•
~x )q).

Proof. Every theory T (in our conditions) has a ⌃1-numeration ⌧ [27] in EA. The proof of

EA ` ~Q ~x .Pr⌧(p'(
•
~x )q) is analogous to the correspondent result in the previous Theorem,

based on the derivability conditions of Fact 5.2.1(B). a

The Numeral Completeness of S12 has several consequences; for instance, it yields a
small reflection principle for⌃b1(S

1
2)-formulas, similar to the one established in [97], namely

for a �b

1(S
1
2)-numeration ⌧ and any formula ', I�0 +⌦1 ` 8x.Pr⌧(p8y 

•
x.Prf⌧(p'q, y)!

'q).

Corollary 5.3.1 (Small Reflection Principle for S12). Given a �b

1(S
1
2)-definable theory T , for

any �b

1(S
1
2) proof predicate Prf and any ⌃b

1(S
1
2)-formula ', there is a numeration ⌧ of T in S12

such that Pr⌧ is a provability predicate for T in S12 and S12 ` 8x.Pr⌧(pPrf (p'q,
•
x)! 'q).

Proof. This Corollary follows from the Numeral Completeness of S12 when one has in
mind that Prf (p'q,x)! ' is a true ⌃b

1(S
1
2)-formula. a

The next result is also an immediate consequence of the Numeral Completeness of
S12; in this result, we specify the arithmetical complexity of the obtained numeration for
a particular setting.
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Corollary 5.3.2. Given a �b

1(S
1
2)-definable theory T , for every 8~x .'(~x ), a true 8�b

1(S
1
2)-

sentence, there is an 9�b

1(S
1
2)-numeration ⌧ of T in S12 such that Pr⌧ is a provability predicate

for T in S12 and S12 ` 8~x .Pr⌧(p'(
•
~x )q).

Proof. The proof of the Numeral Completeness of S12 guarantees that the constructed ⌧ is
an 9�b

1(S
1
2)-numeration satisfying the desired conditions. a

It is interesting to notice that Numeral Completeness can be generalized to any kind
of sentences (even to false sentences), but in this case we can no longer guarantee that
the predicate we obtain defines T -provability in N; thus, we cannot guarantee that the
sentence of the result is capturing a form of truth. To prove this generalization, we use a
di↵erent proof technique, to wit we make use of the Diagonalization Lemma5; moreover
we do not make use of the soundness of S12 to prove this general result.

Proposition 5.3.1 (Revisited Numeral Completeness of S12). Given a �b

1(S
1
2)-definable the-

ory T (in S12), for every sentence (not necessarily true) ~Q ~x .'(~x ), with '(~x ) a ⌃
b

1(S
1
2)-formula,

there is a numeration ⌧ of T in S12 such that S12 ` ~Q ~x .Pr⌧(p'(
•
~x )q).

Proof. In this proof we use a proof predicate for S12, by denoting by PrS1
2
the predicate

Pr⇠ , for some fixed �b

1(S
1
2)-numeration ⇠ of the axioms of S12 in S12. Let  (v) be a �

b

1(S
1
2)-

numeration of T in S12. We may therefore assume S12 ` PrS1
2
! Pr . By the Diagonalization

Lemma (see [39, p. 158] and [84, p. 29]), we obtain a formula ⌧(v) such that

S12 ` ⌧(v)$
⇣
 (v)_ (¬( ~Q ~x .'(~x ))^¬PrS1

2
(p⌧( •v)q))

⌘
.

Firstly, let us prove that ⌧ is a numeration of T in S12, scilicet that, for all n 2 N, S12 `
 (n) () S12 ` ⌧(n). Clearly, the implication =) is immediate; let us argue for the other
implication. Suppose S12 ` ⌧(n). Then, from C1, S12 ` PrS1

2
(p⌧(n)q), and so S12 `  (n).

Just like in the proof of Theorem 5.3.1, using conditions C1–C4, we can establish

S12 ` ~Q ~x .'(~x ) ! ~Q ~x .Pr⌧(p'(
•
~x )q) and S12 ` Pr⌧(p?q) ! Pr⌧(p'(

•
~x )q); thus, it su�ces to

prove S12 ` ¬Pr⌧(p?q)! ~Q ~x .'(~x ). As T �̀ ? and  is �b

1(S
1
2), we have that S12 ` ¬ (p?q).

So,

⌧(p?q)$ (¬( ~Q ~x .'(~x ))^¬PrS1
2
(p⌧(p?q)q)), (I)

in particular S12 ` ⌧(p?q)! ¬PrS1
2
(p⌧(p?q)q). Moreover, we also conclude

S12 ` PrS1
2
(p⌧(p?q)q)! PrS1

2
(p¬PrS1

2
(p⌧(p?q)q)q).

From C3, we know that S12 ` PrS1
2
(p⌧(p?q)q)! PrS1

2
(pPrS1

2
(p⌧(p?q)q)q), and consequently

S12 ` PrS1
2
(p⌧(p?q)q)! PrS1

2
(p?q). As S12 ` PrS1

2
! Pr⌧ , we conclude

S12 ` PrS1
2
(p⌧(p?q)q)! Pr⌧(p?q). (II)

5The use of the Diagonalization Lemma simply increases the complexity of the proof, but not its applica-
bility, since this result is provable in the very weak Q (see [39, p. 158]).
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From the fact that S12 ` ⌧(x) ! Pr⌧(x) we get S12 ` ¬Pr⌧(p?q) ! ¬⌧(p?q). By (I), S12 `
¬Pr⌧(p?q)! (( ~Q ~x .'(~x ))_PrS1

2
(p⌧(p?q)q)), and so, using (II), S12 ` ¬Pr⌧(p?q)! ~Q ~x .'(~x ).

a

As we observed, this result generalizes Theorem 5.3.1 to any kind of sentence (not
necessarily true), but we can no longer guarantee that Pr⌧ expresses provability, put in
another way, we cannot guarantee that it is a provability predicate. Pr⌧ constructed from
an initial false sentence does not intentionally express a form of completeness; although
⌧ numerates the axioms of T , it might be the case that Pr⌧ does not define T -provability
in N: this is yet another strange facet of the incompleteness phenomenon. As the reader
can see, we did not use soundness, the proof we gave is purely syntactical; this entails
that the result also holds for unsound theories T , namely theories with false principles of
arithmetic.

Although this result generalizes Theorem 5.3.1, in this chapter we will mainly use and
discuss Theorem 5.3.1 and the idea used for the numeration in its proof; this is the case
mostly because in the general setting we have no guarantee of dealing with provability
predicates (not only that, but also the majority of the discussion we present in this chapter
fails for that general case).

We can state a similar result for the theory EA.

Proposition 5.3.2 (Revisited Numeral Completeness of EA). Given a �1(EA)-definable the-
ory T (in EA), for every sentence ~Q ~x .'(~x ) (not necessarily true), with '(~x ) a ⌃1(EA)-formula,

there is a numeration ⌧ of T in EA such that S12 ` ~Q ~x .Pr⌧(p'(
•
~x )q).

Proof. The proof of is similar to the previous one (we obviously make use of the derivabil-
ity conditions of Fact 5.2.1(B)). a

5.3.2 Numeral Consistency

We are now in conditions of presenting the following result concerning finitist consistency
as a particular case of the Numeral Completeness of S12. Informally, it states in S12 that
given a proof predicate Prf for T , a numeral can never be the code of a proof of ? in T .

Theorem 5.3.3 (Numeral Consistency of S12). Let Prf be a�
b

1(S
1
2) proof predicate for a�

b

1(S
1
2)-

definable theory T . There is an 9�b

1(S
1
2)-numeration ⌧ of S12 in S12 such that Pr⌧ is a provability

predicate for T in S12 and S12 ` 8x.Pr⌧(p¬Prf (p?q,
•
x)q).

Proof. The result follows from the Corollary 5.3.2 when one has in mind that the sentence
8x.¬Prf (p?q,x) is true and 8�b

1(S
1
2), by assumption, and by considering T = S12. a

The previous result generalizes Proposition 7 from [10, p. 155], where Buss guarantees
the existence of a bounded, consistent, theory Q (not to be confused with Robinson’s
arithmetic Q) satisfying, in the author’s notation, “Q ` (8x)[Q `BD ConQ(Ix)]”, where ‘Ix’
denotes the numeral of x.
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In addition to Theorem 5.3.3 above, we establish a similar result for EA.

Theorem 5.3.4 (Numeral Consistency of EA). Let Prf be a �1(EA) proof predicate for a theory
T . Then there is a numeration ⌧ of EA in EA such that Pr⌧ is a provability predicate for T in
EA and EA ` 8x.Pr⌧(p¬Prf (p?q,

•
x)q).

Proof. Similar to the previous results, in the sense that it is an adapted carbon copy of the
previous proofs by means of considering the suitable conditions from Fact 5.2.1 (B). a

5.4 Gödel’s Second Incompleteness Theorem and “Provability
Implies Provable Provability”

Gödel’s Second Incompleteness theorem (G2) states, in an intuitive way, that consistency
is not provable in T . More precisely, a standard way to state G2 is due to Feferman [33]:
there is a numeration ⌧ of T such that T �̀¬Pr⌧(p?q). Visser in [98] constructs a numer-
ation � of EA in EA that does not satisfy, for a sentence G, Pr� (pGq)! Pr� (pPr� (pGq)q),
and that does not prove the formalized G2 for � , i.e. ¬Pr� (p?q)! ¬Pr� (p¬Pr� (p?q)q).

The standard proof of G2 (see, for example, [39, p. 164]) requires the use of the deriv-
ability condition stating “provability implies provable provability”—corresponding to
C3 in our context.

The derivability condition “provability implies provable provability”, to wit Pr⌧(x)!
Pr⌧(pPr⌧(

•
x)q), is very sensitive to the considered basis theory; for instance, for I�0 it is

still not known if it holds in general for �0(I�0)-numerations.
In this section, we have two main goals. Firstly, we are going to see that to prove a

version of G2 one does not necessarily need the theory T to satisfy “provability implies
provable provability”; secondly, we are going to guarantee the existence of a numeration
⌧ such that Pr⌧ defines T -provability in N and T ` Pr⌧(x) ! Pr⌧(pPr⌧(

•
x)q); this result

holds for very weak T , not necessarily including S12. These are not competing goals: the
first one shows that G2 does not need the mentioned condition, the second one presents
a particular case for which the condition holds. The idea used in the construction of the
numeration for Theorem 5.3.1 will be used throughout.

5.4.1 Numeral Completeness

We show that we can avoid to use the derivability condition C3 of Fact 5.2.1, the internal
⌃b

1-completeness, in the proof of the Numeral Completeness of S12.

Theorem 5.4.1. The Numeral Completeness of S12 can be proved without using C3.

Proof. Let us follow the notation of the proof of the Numeral Completeness of S12 (Theo-
rem 5.3.1), but consider instead the numeration

⌧(v) :=  (v)_¬( ~Q ~x .Pr (p'(
•
~x )q)).
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By assumption, N |= ~Q ~x .'(~x ), and so, as S12 is ⌃b

1-complete, N |= ~Q ~x .Pr (p'(
•
~x )q).

Repeating the initial reasoning made in the proof of Theorem 5.3.1, we can claim that ⌧ is
a numeration of T in S12 and that the numeration  is included in ⌧ (i.e., S12 `  ! ⌧). Thus,
the conditions of Fact 5.2.1(A) hold and, in particular, by C5 we have (a) S12 ` Pr ! Pr⌧ .

Repeating item (i) from the proof of Theorem 5.3.1, we have (b) S12 ` ¬Pr⌧(p?q)!
~Q ~x .Pr (p'(

•
~x )q). This uses only C4.

Repeating item (ii) from the proof of Theorem 5.3.1, we have that S12 ` Pr⌧(p?q)!
Pr⌧(p'(

•
~x )q), and thus (c) S12 ` Pr⌧(p?q)! ~Q ~x .Pr⌧(p'(

•
~x )q) holds. This uses only C1 and

C2.

From (a) and (b) we obtain S12 ` ¬Pr⌧(p?q)! ~Q ~x .Pr⌧(p'(
•
~x )q). Finally, this together

with (c) leads to S12 ` ~Q ~x .Pr⌧(p'(
•
~x )q). The derivability condition C3 was not used. a

Although the previous numeration does not require the use of C3 by using the much
weaker condition C5, this comes with a cost: this numeration has a bigger arithmetical
complexity than the original one. The arithmetical complexity of the numeration is of
interest by its own right, but we will also see in Section 6 that it plays an important role
to extract functional information.

5.4.2 Gödel’s Second Incompleteness Theorem for Weak Theories

In the rest of this section, and only here, T is a theory that includes Robinson’s Q (and not
necessarily S12) and is any fixed⌃1(T )-numeration of T in T . Such theory T is potentially
very weak, as we do not demand the derivability condition C3, i.e. the internal ⌃1-
completeness or the internal ⌃b

1-completeness. For simplicity, here we write ‘numeration
of T ’ instead of ‘numeration of T in T ’.

Consider the derivability conditions of Section 5.2.2, but for T . For C1, C2, and C4
we consider the following non-uniform6 versions:

C1’. If T ` ', then T ` Pr⌧(p'q);

C2’. T ` Pr⌧(p'!  q)! (Pr⌧(p'q)! Pr⌧(p q));

C4’. T ` ⌧(p'q)! Pr⌧(p'q).

The following result is in the same spirit as Hilbert-Bernays Completeness Theorem
from [91, p. 860], but here it is stated for T , a potentially very weak theory.

Theorem 5.4.2 (Consistency Completeness of T ). Let T be a sound theory that satisfies C4’
for any numeration of T that includes  . Consider ' any true sentence. There is a numeration
⌧ of T such that Pr⌧ is a provability predicate for T and T +¬Pr⌧(p?q) ` '.

6This term is commonly used in reference to the fact that these conditions are not stated using numeral
abstraction of the free-variables of the considered formulas.
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Proof. Consider  the mentioned ⌃1(T )-numeration of T . Take7

⌧(v) :=  (v)_ (¬' ^ v = p?q).

From a previously reasoning, ⌧ is a numeration of T (this works because T includes
Q, and so is ⌃1-complete; we also require the soundness of T ). Furthermore, by C4’, we
obtain T +¬Pr⌧(p?q) ` ¬⌧(p?q), consequently T +¬Pr⌧(p?q) ` '. The fact that Pr⌧ defines
T -provability in N follows from the fact that ⌧ defines the T -axioms in N and the fact that
T is sound. a

Similarly to what is done in Proposition 5.3.1, we revisit the previous result, dropping
the soundness of T and the assumption that ' is true and substitute them by T �̀¬', but
we can no longer guarantee that Pr⌧ defines T -provability in N. This means that, in this
context, T might have some false principles, since we do not require soundness.

Proposition 5.4.1 (Revisited Consistency Completeness of T ). Let T be a theory that sat-
isfies C4’ for any numeration of T that includes  and such that T ` 8x.8y.x  y _ y < x. Let
' be any sentence (not necessarily true) with T �̀¬'. Then, there is a numeration ⌧ of T such
that T +¬Pr⌧(p?q) ` '.

Proof. Without loss of generality, we may assume that  (v) is of the form 9x.�(v,x), for
some �0-formula �(v,x). By the Diagonalization Lemma, we can construct a formula ⌧(v)
such that, for any n 2 N,

T ` ⌧(n)$
⇣
9x.�(n,x)^8y < x.¬Prf (p⌧(n)q, y)

⌘
_¬'.

Let us confirm that ⌧ is a numeration of T . It su�ces to establish T `  (n) () T ` ⌧(n).

• Suppose, in view of obtaining a contradiction, that T `  (n) and T �̀ ⌧(n). Since
9x.(�(n,x)^8y < x.¬Prf (p⌧(n)q, y)) is true, thus, from the ⌃1-completeness of T ,
T ` 9x.(�(n,x)^8y < x.¬Prf (p⌧(n)q, y)); and so T ` ⌧(n), a contradiction.

• Suppose, towards a contradiction, that T ` ⌧(n) and T �̀ (n). So, 9y.Prf (p⌧(n)q, y)^
8x.¬�(n,x) is true and so, from ⌃1-completeness,

T ` 9y.(Prf (p⌧(n)q, y)^8x  y.¬�(n,x)). (I)

Reason inside the theory T and assume8, aiming at a contradiction, that9x0.(�(n,x0)^
8y < x0.¬Prf (p⌧(n)q, y)). Consider such an x0 and consider y0 satisfying the exis-
tentially quantified (I). This means that

a) Prf (p⌧(n)q, y0)^8x  y0.¬�(n,x), and
7The proof clearly works for ⌧(v) :=  (v)_ ¬', but the numeration we are considering is going to be

useful for the proof of Theorem 5.4.4.
8This is a reasoning similar to the one used to establish Rosser’s version of the First Incompleteness

Theorem.
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b) �(n,x0)^8y < x0.¬Prf (p⌧(n)q, y).

We know that x0  y0 _ y0 < x0. Let us analyze both cases:

x0  y0: In this case, from b), �(n,x0). From a), as x0  y0, we also get ¬�(n,x0), a
contradiction.

y0 < x0: From a), Prf (p⌧(n)q, y0), and, as y0 < x0, from b) we get ¬Prf (p⌧(n)q, y0),
a contradiction.

As in both cases we obtained a contradiction, we can therefore conclude¬9x0.(�(n,x0)^
8y < x0.¬Prf (p⌧(n)q, y)). Going outside T , we established T ` ¬9x0.(�(n,x0)^8y <

x0.¬Prf (p⌧(n)q, y)). Then, T ` ⌧(n)$ ¬'; so T ` ¬', a contradiction.

We can establish T +¬Pr⌧(p?q) ` ' in a similar way to the one followed in the proof of
Theorem 5.4.2. a

Emission9 is one of the standard properties for provability predicates. It states, for
provability predicates P0 and P1, that, for any formula ', T ` P0(p'q)! P0(pP1(p'q)q).
The next result presents a weak form of a property similar to emission, namely T `
P0(p'q)! P1(pP0(p'q)q). Such a property is going to be very useful to study “provability
implies provable provability”, see Theorem 5.4.4.

Proposition 5.4.2 (Local Form of Emission and ⌃1-Completeness for T ). Let T be a ⌃2(T )-
sound theory that satisfies C1’, C2’, and C4’ for generic numerations of T that include  , and
let � be any ⌃1-formula. Then, there is a numeration ⌧ of T such that Pr⌧ is a provability
predicate for T and T ` � ! Pr⌧(p�q). In particular, for any formula ', there is ⌧ such that
T ` Pr (p'q)! Pr⌧(pPr (p'q)q).

Proof. Clearly, � ! Pr (p�q) is true. Take ⌧ as defined in the proof of the Theorem
5.4.2 applied to the mentioned true sentence (this uses C4’)10. Then, T + ¬Pr⌧(p?q) `
� ! Pr (p�q), and so T +¬Pr⌧(p?q) ` � ! Pr⌧(p�q). Furthermore, it is straightforward
to see, using C1’ and C2’, that we have T + Pr⌧(p?q) ` � ! Pr⌧(p�q), and so the result
follows. (The fact that Pr⌧ is a provability predicate follows from the fact that ⌧ defines
the T -axioms in N, from the fact that Pr⌧ is ⌃2(T ), and the fact that T is ⌃2(T )-sound.) a

We now show a uniform version of the Local Form of Emission for T .

Proposition 5.4.3 (Uniform Form of Emission for T ). Let T be a ⌃2(T )-sound theory that
satisfies C1, C2, and C4’, for generic numerations of T that include  . Then, there is a numer-
ation ⌧ of T such that Pr⌧ is a provability predicate for T and T ` 8x.Pr (x)! Pr⌧(pPr (

•
x)q).

9For a study of emission and absorption, with a special focus on the latter, see [102].
10For this result, ⌃2(T )-soundness is enough, since we only need soundness to guarantee that ⌧ is a

numeration, where ⌧(v) :=  (v)_ (¬' ^ v = p?q), with ' := � ! Pr (p�q) a ⌃2(T )-sentence.
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5.4. GÖDEL’S SECOND INCOMPLETENESS THEOREM AND “PROVABILITY
IMPLIES PROVABLE PROVABILITY”

Proof. It is clear that 8x.Pr (x)! Pr (pPr (
•
x)q) is a true sentence. Let ⌧ be the numera-

tion guaranteed for that true sentence by the Consistency Completeness of T (this step
uses C4’ and ⌃2(T )-soundness). Then, T +¬Pr⌧(p?q) ` 8x.Pr (x)! Pr (pPr (

•
x)q), and so

T +¬Pr⌧(p?q) ` 8x.Pr (x)! Pr⌧(pPr (
•
x)q). It is easy to conclude, using C1 and C2, that

T + Pr⌧(p?q) ` 8x.Pr (x)! Pr⌧(pPr (
•
x)q), which proves the result. a

The next result is a form of G2 for T , in the sense that it claims the existence of a
numeration ⌧ such that the corresponding consistency statement, namely ¬Pr⌧(p?q), is
not provable in T .

Theorem 5.4.3 (G2 for Weak Theories). Let T be a ⌃1(T )-sound theory that satisfies C1’,
C2’, and C4’ for any numeration of T that includes  . Then, there is a numeration ⌧ of T
such that Pr⌧ is a provability predicate for T and T ` ¬Pr⌧(p?q)$ ¬Pr (p¬Pr⌧(p?q)q). In
particular:

1. T �̀¬Pr⌧(p?q);

2.  verifies G2 for ⌧, i.e. T ` ¬Pr⌧(p?q)! ¬Pr (p¬Pr⌧(p?q)q).

Proof. As T includes Q, by the Diagonalization Lemma, we ensure the existence of a sen-
tence Gsuch that T ` G$ ¬Pr (pGq). Take ⌧ as defined in the Consistency Completeness
of T for the true sentence11 G. As T `  ! ⌧, it follows from logic that T ` Pr ! Pr⌧ ,
therefore T ` ¬Pr⌧(p?q)! ¬Pr (p?q).

As T + G` ⌧$  , it follows that T + G` Pr⌧ $ Pr , and so we can claim that

T + G` ¬Pr (p?q)! ¬Pr⌧(p?q). (I)

Clearly, from C1’ and C2’, T ` Pr (p?q) ! Pr (pGq), so T ` ¬Pr (pGq) ! ¬Pr (p?q),
i.e. T ` G! ¬Pr (p?q). From (I) we obtain that T + G` ¬Pr⌧(p?q), and consequently
T ` G! ¬Pr⌧(p?q). By the Consistency Completeness of T (that uses C4’) we get T `
¬Pr⌧(p?q)! G, and so T ` ¬Pr⌧(p?q)$ G. So, T ` ¬Pr⌧(p?q)$ ¬Pr (p¬Pr⌧(p?q)q). a

5.4.3 ‘Provability Implies Provable Provability’ for Weak Theories

The next result holds for T = I�0.

Theorem 5.4.4 (‘Provability Implies Provable Provability’ for Weak Theories). Let T be
a ⌃2(T )-sound theory with a numeration  of the axioms of T satisfying the conditions of
Proposition 5.4.3. Then, there is a ⌃2(T )-numeration ⌧ of the axioms of T such that Pr⌧ is a
provability predicate for T and T ` Pr⌧(x)! Pr⌧(pPr⌧(

•
x)q).

11To apply this result, we just need ⌃1(T )-soundness to guarantee that ⌧(v) :=  (v)_ (¬G^ v = p?q), a
⌃1(T )-sentence, is a numeration.
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Proof. Let ⌧ be the numeration that is guaranteed to exist from Proposition 5.4.3 such
that12

T ` Pr (x)! Pr⌧(pPr (
•
x)q). (I)

By construction, T `  ! ⌧, and so T ` Pr ! Pr⌧ , and thus

T ` Pr⌧(pPr (
•
x)q)! Pr⌧(pPr⌧(

•
x)q). (II)

Reason inside T . Let us assume Pr⌧(x) and prove Pr⌧(pPr⌧(
•
x)q). So, 9y.Prf⌧(x,y), namely

9y.Sq(y)^¬L(y) = 0^ (8u < L(y).Fm((y)
u
)^ (III)

(⌧((y)
u
)_9v < u.9w < u.(y)

v
= (y)

w

•! (y)
u
))

^ x = (y)L(y) •�1.

From logic, either 1: 8u < L(y).Fm((y)
u
)^ ( ((y)

u
)_9v < u.9w < u.(y)

v
= (y)

w

•! (y)
u
), or 2:

9u < L(y).¬Fm((y)
u
)_ (¬ ((y)

u
)^¬9v < u.9w < u.(y)

v
= (y)

w

•! (y)
u
). Let us analyze the

two possibilities:

1: In this case, it follows that Pr (x), so, using (I), it follows Pr⌧(pPr (
•
x)q); using (II) we

obtain the desired Pr⌧(pPr⌧(
•
x)q).

2: From (III), we know that 8u < L(y).Fm((y)
u
), so 9u < L(y).¬ ((y)

u
) ^ ¬9v < u.9w <

u.(y)
v
= (y)

w

•! (y)
u
. Let u0 < L(y) satisfy the previous existentially quantified

formula. Then, ¬ ((y)
u0
)^¬9v < u0.9w < u0.(y)v = (y)

w

•! (y)
u0
, in particular¬9v <

u0.9w < u0.(y)v = (y)
w

•! (y)
u0
. From (III), ⌧((y)

u0
). Using again the construction

of ⌧ from Proposition 5.4.3,  ((y)
u0
)_ (¬' ^ (y)

u0
= p?q), where ' := 8x.Pr (x)!

Pr (pPr (
•
x)q). As we concluded ¬ ((y)

u0
), we have (y)

u0
= p?q; this entails ⌧(p?

q), ergo Pr⌧(p?q). Using the fact that13 Pr⌧(p?q) ! Pr⌧(pPr⌧(
•
x)q), we conclude

Pr⌧(pPr⌧(
•
x)q).

As both in 1 and in 2 we were able to conclude Pr⌧(pPr⌧(
•
x)q), it follows that Pr⌧(pPr⌧(

•
x)q)

must, in fact, hold. Canceling the initial assumption, we obtain Pr⌧(x)! Pr⌧(pPr⌧(
•
x)q);

stepping outside T it entails the desired fact: T ` Pr⌧(x)! Pr⌧(pPr⌧(
•
x)q). a

5.5 Characterization of the Provability Predicates that Satisfy
Numeral Completeness and Consistency

In this section, we give a characterization of the provability predicates that satisfy the
completeness and the consistency results from before, for theories including EA14. Thus,

12It is straightforward that ⌧ is ⌃2(T ).
13From logic, T `?! Pr⌧(x), and so T ` Pr⌧(p?! Pr⌧(

•
x)q), thus T ` Pr⌧(p?q)! Pr⌧(pPr⌧(

•
x)q).

14An analogous approach could be followed for S12.
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5.5. CHARACTERIZATION OF THE PROVABILITY PREDICATES THAT SATISFY
NUMERAL COMPLETENESS AND CONSISTENCY

along this section, S and T are theories (not necessarily sound) extending EA. In this
context, for P a provability predicate for T over a sub-theory S of T we consider the
following derivability conditions:

P1. If T ` '(~x ), then S ` P(p'(
•
~x )q);

P2. S ` P(p'(
•
~x )!  (

•
~x )q)! (P(p'(

•
~x )q)! P(p (

•
~x )q));

P3. For all ⌃1(S)-formula '(~x ), S ` '(~x )! P(p'(
•
~x )q).

Lemma 5.5.1. Let P be a provability predicate for T over a sub-theory S of T satisfying P1–P3.

If '(~x ) is a ⌃1(S)-formula such that S ` ¬P(p?q)! ~Q ~x .'(~x ), then S ` ~Q ~x .P(p'(
•
~x )q).

Proof. Clearly, S `?! '(~x ), which implies, by P1, S ` P(p?! '(
•
~x )q), and consequently

by P2, S ` P(p?q)! P(p'(
•
~x )q). Therefore, S ` ¬ ~Q ~x .'(~x )! P(p'(

•
~x )q), so S ` ¬ ~Q ~x .'(~x )!

~Q ~x .P(p'(
•
~x )q). Moreover, by P3, S ` '(~x )! P(p'(

•
~x )q), so S ` ~Q ~x .'(~x )! ~Q ~x .P(p'(

•
~x )q).

In sum, S ` ~Q ~x .P(p'(
•
~x )q). a

Lemma 5.5.2. Let P be a provability predicate for T over a sub-theory S of T satisfying P1–P3.

If '(~x ) is a ⇧1(S)-formula satisfying S ` ~Q ~x .P(p'(
•
~x )q), then S ` ¬P(p?q)! ~Q ~x .'(~x ).

Proof. Assume the antecedent of the implication we want to prove. It is clear, using P1

and P2, that S +P(p'(
•
~x )q)^P(p¬'(

•
~x )q) ` P(p?q), so

S +¬P(p?q) ` P(p'(
•
~x )q)! ¬P(p¬'(

•
~x )q). (I)

Since S ` ¬'(~x ) ! P(p¬'(
•
~x )q), we get S ` ¬P(p¬'(

•
~x )q) ! '(~x ). By (I), we conclude

S +¬P(p?q) ` P(p'(
•
~x )q)! '(~x ). Then, S +¬P(p?q) ` ~Q ~x .P(p'(

•
~x )q)! ~Q ~x .'(~x ). Conse-

quently, S ` ¬P(p?q)! ~Q ~x .'(~x ). a

Using the previous results, we are in condition of stating the characterization concern-
ing Numeral Completeness and Numeral Consistency.

Theorem 5.5.1 (Characterization of Numeral Completeness). Let P be a provability pred-
icate for T over a sub-theory S of T satisfying P1–P3. If ~Q ~x .'(~x ) is a sentence, with '(~x ) a
�1(S)-formula, then the following statements are equivalent:

I. S ` ¬P(p?q)! ~Q ~x .'(~x );

II. S ` ~Q ~x .P(p'(
•
~x )q).

Proof. Follows from the two previous Lemmata. a

Theorem 5.5.2 (Characterization of Numeral Consistency). Let P be a provability predicate
in the conditions of the previous result and Prf a �1(S) proof predicate for a consistent theory.
The following statements are equivalent:
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I. S ` 9x.Prf (p?q,x)! P(p?q);

II. S ` 8x.P(p¬Prf (p?q, •x)q).

Proof. Follows from the characterization of the Numeral Completeness. a

We concluded that the provability predicates P which satisfy Numeral Completeness,
for a sentence ~Q ~x .'(~x ), are exactly the ones for which it holds S ` ¬P(p?q)! ~Q ~x .'(~x ).
The characterization of the consistency result was obtained from the previous characteri-
zation; more precisely, the provability predicates P that satisfy the mentioned result are
the ones that satisfy S ` 9x.Prf (p?q,x)! P(p?q).

5.6 Finitist Consistency

In this section, we give practical consequences of Numeral Completeness to the study of
Finitist Consistency. We start with a simple observation15.

Observation 5.6.1. Let us assume that'(x) is a�b

1(S
1
2)-formula and ⌧ a�b

1(S
1
2)-numeration

of S12 in S12. Then, S
1
2 ` '(x)! 9y.Prf⌧(p'(

•
x)q, y), more concretely S12 ` 8x.9y.(¬'(x)_

Prf⌧(p'(
•
x)q, y)). As the formula ¬'(x)_ Prf⌧(p'(

•
x)q, y) is ⌃b

1(S
1
2), we can conclude the

existence of a polytime function f such that, for all n 2 N, S12 ` '(n)! Prf⌧(p'(n)q, f (n)).

Proposition 5.6.1 (Polytime Finitist Consistency of S12). Let Prf be a �
b

1(S
1
2) proof predicate

for a theory T . Then, there is a polytime function f such that, for each n 2 N, f (n) is (the code
of ) a proof of ¬Prf (p?q,n) in S12.

Proof. Follows from the previous Observation. a

Definition 5.6.1. We define the set Tot(T ) to be the set of functions16 whose graph can
be given by a ⌃1-formula '(x,y) satisfying T ` 8x.9!y.'(x,y).

We now consider Kalmar elementary functions. The next result confirms that the defin-
able functions of EA are exactly the Kalmar elementary functions; for this reason, for the
rest of this section, T is a theory including EA.

Fact 5.6.1 ([20, Fact 9]17). If EA ` 8x.9!y. (x,y) with  (x,y) a ⌃1-formula, then  (x,y) is the
graph of a Kalmar elementary function. Conversely, any Kalmar elementary function can be
representable in EA by a ⌃1-formula. Thus, Tot(EA) is the set of Kalmar elementary functions.

Definition 5.6.2. We define EA⇤ to be the theory EA extended by a function-symbol
defining each Kalmar elementary function.

15This was kindly observed by Emil Je„ábek from a much more complex argument that we initially had.
16It is easy to generalize this definition for functions of di↵erent arities.
17See also [3].
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With Numeral Completeness we can improve Observation 5.6.1 by internalizing the
statement. We state it for EA⇤, but the result can be adapted for other theories, like S12.

18

Theorem 5.6.1 (8�1(EA)-Witnessing). Let T be a �1(EA)-definable theory. If 8~x .'(~x ) is true,
with '(~x ) a �1(EA)-formula, then there are a numeration ⌧ of T in EA and a function-symbol

f such that Prf⌧ defines T -proofs in N and EA⇤ ` 8~x .Prf⌧(p'(
•
~x )q, f(~x )).

Proof. From19 Theorem 5.3.2, we know that EA⇤ ` 8~x .Pr⌧(p'(
•
~x )q), videlicet EA⇤ ` 8~x .9y.

Prf⌧(p'(
•
~x )q, y). As Herbrand Analysis of [88] can be applied to EA⇤, there is a function-

symbol f such that EA⇤ ` 8~x .Prf⌧(p'(
•
~x )q, f(~x )). a

Corollary 5.6.1 (Internal Finitist Consistency of EA). Let Prf be a �1(EA) proof predicate
for a theory T . Then there are a numeration ⌧ of T in EA and a function-symbol f such that
Prf⌧ defines T -proofs in N and EA⇤ ` 8x.Prf⌧(p¬Prf (p?q,

•
x)q, f(x)).

Proof. Immediate from the previous Theorem. a

The next result shows that if Observation 5.6.1 would hold for ⌃b

1(S
1
2)-formulas in

general, then P = NP (see Theorem 3.2.7 and Theorem 4.2.1 of [79] for results of a similar
nature).

Theorem 5.6.2. If for all ⌃b

1(S
1
2)-formulas '(x) there is a polytime function f such that, for

all n 2 N, N |= '(n)! Prf⌧(p'(n)q, f (n)); then P = NP.

Proof. ConsiderX aNP-complete set. From [10, p. 20], we know that there is a⌃b1-formula
' defining X, i.e. n 2 X () N |= '(n). Consider

g(n) :=

8>>><>>>:

1, f (n) is (the code of) a proof '(n) in S12;

0, otherwise.

As f is a polytime function and as we can decide in polytime if “x is a proof of y in S12”,
we conclude that g is a polytime function.

Clearly, if g(n) = 1, then f (n) is (the code of) a proof of '(n) in S12, so S12 ` '(n), and
hence N |= '(n) (this step requires soundness). Furthermore, if N |= '(n), then, as by
assumption N |= '(n)! Prf⌧(p'(n)q, f (n)), it follows N |= Prf⌧(p'(n)q, f (n)), i.e. g(n) = 1.
In sum, g(n) = 1 () N |= '(n) () n 2 X. So, g is polytime and

g(n) =

8>>><>>>:

1,n 2 X;

0,n /2 X.

This entails X 2 P. a
18Any theory allowing Sieg’s Herbrand Analyses of [88] would work; in the case of S12, we would need to

use either some form of a collection principle or witnessing functions.
19This result uses the soundness of EA⇤.
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We would like to generalize the result for arbitrary extensions T of EA, instead of
EA⇤, unfortunately, we have no guarantee that T has function-symbols for each definable
function. So we are able to state only a result similar to the Polytime Finitist Consistency
of S12 (Proposition 5.6.1).

As in [2], let B� be the principle

8x  a.9y. (x,y)!9z.8x  a.9y  z. (x,y),

where  (x,y) is a �-formula, possibly containing other parameters.

Fact 5.6.2 ([2, Corollary 4.1]). EA+B⌃1 is ⇧2-conservative over EA.

Proposition 5.6.2. If EA+B⌃1 ` 8x.9!y. (x,y) with  (x,y) a ⌃1-formula, then  (x,y) is the
graph of a Kalmar elementary function. Conversely, any Kalmar elementary function can be
representable in EA+B⌃1 by a ⌃1-formula. Thus, Tot(EA+B⌃1) is the set of Kalmar elementary
functions.

Proof. Follows from the fact that 8x.9!y. (x,y) is ⇧2(EA) and from the two previous
facts. a

Let us now state a useful technical result that uses a standard procedure in metamath-
ematics.

Lemma 5.6.1. Given a theory T , suppose that, for some ⌃1-formula '(x,y), T ` 8x.9y.'(x,y).
Then, there is a function f 2 Tot(T ) such that, for all n 2 N, T ` '(n,f (n)).

Proof. Consider '(x,y) := 9z1. · · ·9zm. (x,y,z1, . . . , zm), with  a �0-formula. Take

'
0(x,y) := 9u.(y = (u)0^ (x, (u)0, . . . , (u)m)^

8t < u.¬ (x, (t)0, . . . , (t)m)).

The rest of the proof is a straightforward application of the definition to '0(x,y) exploiting
the fact that EA has sequences functions and projections. a

Corollary 5.6.2. If EA+B⌃1 ` 8x.9y.'(x,y), with '(x,y) a ⌃1(EA)-formula, then there is a
Kalmar elementary function f such that, for all n 2 N, EA ` '(n,f (n)).

Proof. Follows immediately from the previous Lemma and from Proposition 5.6.2. a

Theorem 5.6.4 will be a generalization of the Polytime Finitist Consistency of S12 (Propo-
sition 5.6.1). It will be corollary of the following theorem.

Theorem 5.6.3 (Proofs Witnessing �1(T )-truth). Let '(x) be a �1(T )-
formula. There is a function f 2 Tot(T ) such that, for each n 2 N, if N |= '(n), then f (n) is (the
code of ) a T -proof of '(n).
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Proof. With Observation 5.6.1, adapted to the internal ⌃1-completeness of T , we have
that, for ⌧ a ⌃1(T )-numeration of T ,

T ` 8x.9y.(¬'(x)_ Prf⌧(p'(
•
x)q, y)).

By Lemma 5.6.1, there is a function f 2 Tot(T ) such that, for all n 2 N,

T ` '(n)! Prf⌧(p'(n)q, f (n)).

It follows that, if N |= '(n), then N |= Prf⌧(p'(n)q, f (n)). a

Theorem 5.6.4 (General Finitist Consistency for T ). Let Prf be a �1(T ) proof predicate of
a (consistent) theory T . Then, there is a function f 2 Tot(T ) such that, for each n 2 N, f (n) is
(the code of ) a T -proof of the sentence ¬Prf (p?q, f (n)).

Proof. Follows immediately from the previous result. a

The next result states that the construction of the “Proofs Witnessing �1(T )-truth”
cannot be carried out inside T , in the sense that it cannot be codified by a single function
f (#',n) 2 Tot(T ).

Theorem 5.6.5. There is no function f 2 Tot(T ) such that, for any ⌃1-formula '(x), N |=
'(n) =) N |= Prf⌧(p'(n)q, f (#',n)).

Proof. Suppose, aiming a contradiction, that there is such a function f (#',n) 2 Tot(T ).
Let Rf be a ⌃1(T )-formula representing f in T . By the Diagonalization Lemma, there is
'(x) such that

T ` '(x)$9y.(¬Prf⌧(p'(
•
x)q, y)^Rf (p'q,x,y)).

So, T ` ¬'(n)! (Rf (p'q,n, f (#',n))! Prf⌧(p'(n)q, f (#',n))). As T ` Rf (p'q,n, f (#',n)),
T ` ¬'(n)! Prf⌧(p'(n)q, f (#',n)). If'(n) was false, it would follow Prf⌧(p'(n)q, f (#',n)),
and thus T ` '(n), a contradiction; consequently N |= '(n). As ' is a ⌃1(T )-formula and
T is ⌃1-complete, we conclude T ` '(n), hence T ` 9y.(¬Prf⌧(p'(n)q, y)^Rf (p'q,n,y)).
This entails T ` ¬Prf⌧(p'(n)q, f (#',n)), which contradicts the assumption. a

5.7 A general Negative Bound on Finitist Consistency Proofs

For a fixed Hilbert-style system, we use the notation T
n steps

' to express that there is
a T -proof of ' whose number of lines is at most n; and the notation T

n
' to express

that there is a T -proof of ' whose size (length of the binary representation of the Gödel-
number of the proof) is bounded by n.

In this section, we are going to study bounded notions of provability, i.e. formulas

B(x,y) such that T ` ' () 9n 2 N.T ` B(p'q,n). Clearly, T k steps
and T

n are bounded
notions of provability, after a suitable representation is made inside T ; moreover, every

101



CHAPTER 5. NUMERAL COMPLETENESS

proof predicate is trivially a bounded notion of provability20. Given B a bounded notion
of provability, we define T

B

n
' by T ` B(p'q,n); and ConB(x) := ¬B(p?q,x).

We are going to generalize the reasoning of Theorem 4 from [12] (see also Theorem
3.1 of [76]), that was stated for T n , to any decidable (i.e., �1(T )) bounded notion of
provability. Although this result is not a consequence of Numeral Completeness, it is
related to Corollary 5.6.1. The latter is concerned to finitist consistency and was proved
directly using Numeral Completeness. In a sense, this section is nothing more than an
additional observation to what we have stated so far.

Theorem 5.7.1 (Negative Bound on Proofs of Consistency). Suppose that the formula B(x,y)
is �1(T ) and that, for a fixed ⌃1(T )-numeration ⌧ of T in T :

E1. T ` B(p'( •x)q, y)! Pr⌧(p'(
•
x)q);

E2. If T ` ', then there is c 2 N such that T ` B(p'q, c);

E3. There is a function k, ⌃1(T )-representable in T by the term k, such that

T ` B(p'(x)q, y)! B(p'( •x)q,k(y,x));

E4. For each �1(T )-formula '(x) there is a function f#' , �1(T )-definable in T by a term f#' ,
such that T ` '(x)! B(p'( •x)q, f#'(x));

E5. There is a function g , ⌃1(T )-representable in T by the term g, such that

T ` B(p'( •x)q, a)^B(p'( •x)!  (
•
x)q, b)!

B(p ( •x)q, a+ b +g(p'q,p q,x));

E6. T ` x  y ^B(z,x)! B(z,y).

Suppose that j is any function, ⌃1(T )-representable in T by the term j, such that that there is a
term t in T satisfying the following property: for all fixed n0,n1,n2 2 N, for n su�ciently big

T ` j(n) + k(n0,n) +g(n1,n2,n)  t(n).

Then, it is not the case that

T ` B(pConB(h(n))q, j(n)), n 2 N,

i.e. it is not the case that

T
B

j(n)
ConB(h(n)), n 2 N,

with h(x) := t(x) + fn0(x) +g(n1,n2,x), for certain fixed n0, n1, and n2.
20Here the term ‘bounded’ is used in reference to the previously stated notions on the number of steps

and symbols; further conditions on B could have been made, but we decided to state our results in a very
general form.
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Conditions E1 and E2 express the fact that B is a bounded notion of provability. E3
a�rms that a feasible form of universal instantiation holds for B. Likewise, E4 expresses
a form of �1(T )-completeness, and E5 a form of modus ponens. (In fact, a su�cient
condition to satisfy E4 is, for �1(T )-formulas '(x), the �1(T )-completeness of the form
T ` '(x)!9y.B(p'( •x)q, y).) The last condition, guarantees monotonicity in the sense of
E6.

Proof of Theorem 5.7.1. Take '(x) given by the Diagonalization Lemma such that

T ` '(x)$ ¬B(p'( •x)q, t(x)). (I)

So, T ` ¬'(x)! B(p'( •x)q, t(x)); moreover, as ¬'(x) is a �1(T )-formula, we have by E4
that T ` ¬'(x)! B(p¬'( •x)q, f#¬'(x)). From E5 it follows (assuming ¬' := '!?)

T ` ¬'(x)! B(p?q, t(x) + f#¬'(x) +g(p'q,p?q,x)).

Therefore,

T ` ConB(t(x) + f#¬'(x) +g(p'q,p?q,x))! '(x).

Take h(x) := t(x) + f#¬'(x) + g(p'q,p?q,x). Suppose, aiming a contradiction, that, for
each n 2 N, T ` B(pConB(h(n))q, j(n)). From before and E2, there is c 2 N such that T `
B(pConB(h(x))! '(x)q, c), so, by E3, it follows T ` B(pConB(h(

•
x))! '(

•
x)q,k(c,x)). Thus,

again by E5, for n 2 N,

T ` B(p'(n)q, j(n) + k(c,n) +g(pConB(h(x))q,p'(x)q,n)).

As, for n big enough,

T ` j(n) + k(c,n) +g(pConB(h(x))q,p'(x)q,n)  t(n),

we conclude T ` B(p'(n)q, t(n)). From E1, T ` '(n); but by (I), T ` ¬'(n), which is a
contradiction. a

Consider Stepy(x) as the formalization of T
k steps

. The next result contribute to the
study of k-provability (complementing results which can be found, for instance, in [12]).

Theorem 5.7.2 (Negative Bound on the Number of Steps of Consistency). Let j represent
any ⌃1(T )-function j and assume that E4 holds for Stepy(x) in T and that this formula is
�1(T ). Then, there are n0,n1 2 N such that it is not the case that

T
j(n) steps

Consteps(fn0(n) + j(n) +n1), n 2 N

where Consteps(x) := ¬Step(p?q,x).

Proof. Follows from the previous result by considering g(x,y,z) = 1 (since an application
of modus ponens simply corresponds to adding 1 to the total number of steps); k(x,y) = c,
with c 2 N, (since an application of the universal instantiation increases the number of
steps in a finite fixed way); and t(x) := j(x) + 1+ c. a
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CHAPTER 5. NUMERAL COMPLETENESS

PART B: Philosophical Analysis

5.8 Provable Consistency and the Uniformity of
Incompleteness

In this first section of Part B, we show that provable consistency is, in fact, a nice feature
to have; moreover, we confirm that the provability predicates we obtained in the proof
of Numeral Completeness are intensionally sound. The statement of G1 has a uniform
nature, since one can formulate it as follows:

For every provability predicate P of a consistent extension of R, there is a
formula ' such that T �̀ P(p'q) and T �̀ P(p¬'q).

Naturally, one might wonder if an analogous formulation holds for G2, namely:

Does it hold for every provability predicate P in the previous conditions, T �̀
ConP?

The next result answers this question negatively.

Theorem 5.8.1 ([91, p. 841]). Let P be any provability predicate for T , then T ` ConPR and
T ` ConPM .

This means that, unlike G1, G2 does not have a uniform formulation for every prov-
ability predicate. Despite this fact, there are several works in the literature that aim to
find general versions of G2, see [98] as an example of excellent work in that direction.
Here one could trace the previous unexpected fact to a technical “trick” on the provability
predicate, but the real question is: is it always a “trick” or is it always possible to prove
some form of consistency; furthermore, does this form of consistency represent the “ac-
tual” one? One might be tempted to exclude provability predicates of the form P

R, since
we have the following fact.

Theorem 5.8.2. For all provability predicates P, there is no numeration ⌧ of the axioms of T
such that T ` PR(x)$ Pr⌧(x).

Proof. We know that, for all ⌧, if ' is a ⌃1-formula, then T ` ' ! Pr⌧(p'q); a property
that does not hold for Rosser provability predicates (see Proposition 3.4 from [64]). a

In contrast, we have the following fact established by Feferman (see 5.9 Theorem of
[33]).

Theorem 5.8.3. There is a ⇧1(T )-numeration ↵ of the axioms of T such that T ` Con↵ .

This result entails that the provability of consistency is not a particular feature of
Rosser-like provability predicates. As Feferman observed in [33], one might be tempted,
due to nice technical properties, to consider only ⌃1(T )-numerations of the axioms, but
other numerations turned out to be very relevant for other uses:
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There is nothing “wrong” with the use of arbitrary formulas ↵; rather, the
guiding consideration should be to investigate how di↵erent restrictions on
the choice of ↵ a↵ect the results of arithmetization.

It is in this Fefermanian spirit that we proceed in our investigations.
We will exhibit now several examples of uniformities and desirable technical proper-

ties that are satisfied by provability predicates that prove a form of consistency, but that
usually do not hold for other kinds of provability predicates. This serves to emphasize
that provable consistency is, by no means, an undesirable technical feature.

Here is the first pertinent result. Under a very simple assumption, T proves that all
provability predicates P that admit a form of consistency (P(p¬'q)! ¬P(p'q)), deter-
mine the same �1(T )-sentences in T .

Theorem 5.8.4. Let P0 and P1 be provability predicates that satisfy

• ⌃1-completeness. For each ⌃1(T )-sentence ', T ` '! Pi(p'q), for i 2 {0,1}, and also

• Consistency. For all ' and i 2 {0,1}, T ` Pi(p¬'q)! ¬Pi(p'q).

Then, for all �1(T )-sentences ', T ` P0(p'q)$ P1(p'q).

Proof. As' is a⌃1(T )-sentence, T+¬P1(p'q) ` ¬', and as¬' is a⌃1(T )-sentence, we have
T +¬' ` P0(p¬'q), hence T +¬P1(p'q) ` P0(p¬'q). Using the hypothesis on consistency,
T +¬P1(p'q) ` ¬P0(p'q), so T ` P0(p'q)! P1(p'q). One can prove the other implication
in a similar way. a

Observe that Pr↵ from Theorem 5.8.3 satisfies the conditions of the previous result.
We also have that, under the provable consistency assumption, a form of !-consistency
(see [91, p. 852] for more details on the definition) is also provable:

Theorem 5.8.5. Let P be a provability predicate that satisfies

• ⌃1-completeness. For every ⌃1(T )-formula '(x), T ` '(x)! P(p'( •x)q), and

• Consistency. For all '(x), T ` P(p¬'( •x)q)! ¬P(p'( •x)q).

Then, if '(x) is a ⌃1(T )-formula such that 9x.'(x) is a ⇧1(T )-sentence21,

T ` 8x.P(p¬'( •x)q)! ¬P(p9x.'(x)q).

Proof. Clearly, T +8x.P(p¬'( •x)q) ` 8x.¬P(p'( •x)q). As '(x) is a⌃1(T )-formula, T ` '(x)!
P(p'( •x)q), so T ` ¬P(p'( •x)q)! ¬'(x). From before, T + 8x.P(p¬'( •x)q) ` 8x.¬'(x), i.e.
T +8x.P(p¬'( •x)q) ` ¬9x.'(x). As ¬9x.'(x) is a ⌃1(T )-sentence, we have T ` ¬9x.'(x)!
P(p¬9x.'(x)q), and consequently T + 8x.P(p¬'( •x)q) ` P(p¬9x.'(x)q), therefore we get
T +8x.P(p¬'( •x)q) ` ¬P(p9x.'(x)q), and thus T ` 8x.P(p¬'( •x)q)! ¬P(p9x.'(x)q). a

21This means that 9x.'(x) is a �1(T )-sentence. We used this formulation to emphasize the '(x)-part.
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Provable consistency also gives rise to other kinds of uniformities: all provability
predicates that prove their consistency statement are Mostowski provability predicates.

Theorem 5.8.6. Let P be a provability predicate such that T ` ConP . Then, P is (provably
equivalent to) a Mostowski provability predicate.

Proof. It is a straightforward. a

Moreover, all provability predicates that prove a form of a consistency statement—to
wit T ` P( •¬x)! ¬P(x)—are also Rosser provability predicates.

Theorem 5.8.7. Let P(x) := 9y.Prf (x,y) be a provability predicate that satisfies T ` P( •¬x)!
¬P(x). Then P is (provably equivalent to) a Rosser provability predicate.

Proof. It is not hard to see that

T ` Prf (x,y)! (Prf (x,y)^8z  y.¬Prf ( •¬x,z)).

The result follows immediately from the previous equivalence. a

Given any numeration ⇠ , the next Theorem guarantees that one can construct a nu-
meration ⌧ that proves its own consistency statement and such that Pr⌧ entails, in T , the
provability predicate Pr⇠ . Here we assume that PA is contained in T .

Theorem 5.8.8. For every numeration ⇠ of the axioms of T including PA, there is a numeration
⌧ such that T ` Pr⌧(x)! Pr⇠ (x) and T ` ¬P⌧(p?q).

Proof. It is known that if T includes PA, then for every numeration ✓, T ` PrPr✓ $ Pr✓ (see
[33]). Consider ⌧(v) := ↵(v)^⇠(v), with ↵(v) any numeration such that T ` ¬Pr↵(p?q) (use,
for instance, the one by Feferman). Clearly, T ` ⌧(x)! ⇠(x), and so, T ` ⌧(x)! Pr⇠ (x).
Thus, T ` Pr⌧(x)! PrPr⇠

(x), and so by what was initially observed, T ` Pr⌧(x)! Pr⇠ (x).
Furthermore, T ` ⌧(x)! ↵(x), so T ` Pr⌧(x)! Pr↵(x). As T ` ¬Pr↵(p?q), it follows that
T ` ¬P⌧(p?q). a

Finally, we give a proof that if one considers provability predicates that prove the
consistency statement P(p¬'q)! ¬P(p'q), for each formula ', one can prove a form of
G1 without the need for further assumptions (like !-consistency).

Theorem 5.8.9. Let P be a provability predicate that satisfies

• Consistency. For all formulas ', T ` P(p¬'q)! ¬P(p'q).

Then it does not hold that

• Completeness. For all formulas ', T ` '! P(p'q).
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Proof. Suppose, aiming at a contradiction, that the mentioned condition holds. Consider
GT given by the Diagonalization Lemma such that T ` GT $ ¬P(pGT q). Then, assuming
completeness, T ` GT ! ¬P(pGT q)^ P(pGT q), and thus T ` ¬GT . Hence, T ` P(p¬GT q);
from the assumption, it follows that T ` ¬P(pGT q). By construction of the Diagonalization
Lemma, T ` P(pGT q). Thus, T `?; which contradicts the assumption we made on T

regarding its consistency (because T needs to be a true theory of arithmetic). a

Let us end this section with a remark on intensionality. One possible reaction to what
we have established so far would be to say that the provability predicates we are con-
sidering are not intensional, i.e. they do not fully express the meaning of provability in
T or even the meaning of the consistency statements. In [70] one can find a profound
discussion of intensionality in metamathematics. We do not wish to enter into this dis-
cussion in detail since the goal of this chapter is to present metamathematical results in
line with a form of HP (Hilbert’s Program), not to enter a meaning/intensional discussion.
Nevertheless, we would like to draw the reader’s attention to several facts.

One might agree that PR has very strange technical features in order to prove in-
completeness and one might even question to what extent it is really “the” provability
predicate. However, one cannot ignore the fact that one really needs it to prove G1 with-
out the use of !-consistency (this is a strong indication of the relevance of PR)—see [91, p.
841]. More generally, one cannot ignore the technical uniformities and desirable results
that arise from the use of provability predicates that prove some form of consistency.
Of course, Rosser provability predicates are, indeed, provability predicates, one cannot
simply deny it. Despite this fact, when one uses them in a negative way, i.e., ¬PR, one
has no guarantee that the meaning is preserved; the reader should keep in mind that
EA ` ¬PR(p?q) might be provable even for the case where P

R is a provability predicate
for an inconsistent theory—one just need to satisfy that ¬ ? has a proof that is smaller
than the smallest proof of ?. The same happens for the Mostowski predicate. From this
example, we conclude that there is, in general, no problem when provability predicates
are used in a positive way—there they simply fulfil their representation-job—problems
might arise when they are used negatively.

Our approach is not problematic from an intensional perspective because we do
not use provability predicates in a negative way. In our Numeral Completeness re-

sult, EA ` ~Q ~x .Pr⌧(p'(
•
~x )q) (when ~Q ~x .'(~x ) is true in N), the provability predicate is

used in a positive way in the same way as in our Numeral Consistency result, that is
EA ` 8x.Pr⌧(p¬Prf (p?q,

•
x)q). Furthermore, the provability predicate used in the consis-

tency result is a ⌃1(EA)-provability predicate, i.e., it is a standard provability predicate.
These predicates are commonly accepted as intensionally sound even for more skepti-
cal authors; in fact, according to [70], a provability predicate needs to be ⌃1 in order
to be considered intensional. All this fits with Feferman’s quote on the use of di↵erent
numerations, not necessarily ⌃1, for metamathematical studies.
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5.9 Hilbert’s Programs and Finitist Consistency

Hilbert’s various forms of a consistency program expressed one of the fundamental ap-
proaches to the foundations of mathematics in the 20th century. In 1922, Hilbert formu-
lated his famous proposal to solve the consistency problem for mathematics by focusing
on its formalization and restricting the metamathematical methods to finitist ones. The
underlying notions of formal proof and syntactic consistency had been developed in the
Hilbert School in [48] (a published version can be found in [30, pp. 31–270]). With re-
spect to the axiomatic method that did not yet appeal to a rigorous formal language and
a logical calculus, Hilbert had observed already in 1902 [40, p. 540],

Every science takes its starting point from a su�ciently coherent body of facts
as given. It takes form, however, only by organizing this body of facts. This
organization takes place through the axiomatic method, i.e., one constructs
a logical structure of concepts so that the relationships between the concepts
correspond to relationships between the facts to be organized.
There is arbitrariness in the construction of such a structure of concepts; we,
however, demand of it: 1) completeness, 2) independence, 3) consistency.

There is no reason to believe that Hilbert intended at this point completeness in the
syntactic way we understand it today; indeed, lacking a formal language, that modern
concept could not even be properly formulated. Sieg observed in [89, p. 87] about
Hilbert’s ideas in 1900,

[T]he axiomatic method has to confront two fundamental problems that are
formulated in [Hilbert’s Paris Lecture of 1900] at first for geometry and then
also for arithmetic:

The necessary task then arises of showing the consistency and the
completeness of these axioms, i.e., it must be proved that the ap-
plication of the given axioms can never lead to contradictions, and,
further, that the system of axioms su�ces to prove all geometric
propositions.

It is not clear, whether completeness of the respective axioms requires the
proof of all true geometric or arithmetic statements, or whether provability of
those that are part of the established corpora is su�cient; the latter would be
a quasi-empirical notion of completeness.

These fundamental ideas can be traced back to Dedekind (see [89, p. 95]). They are
formulated most explicitly in a famous letter of Dedekind to Keferstein [41, p. 101].

Throughout the rest of the chapter we will refer by HP to the finitist consistency pro-
gram. For more details on HP we refer to [60], [89], and [105]. There is consensus that the
finitist methods include the mathematical principles of PRA, see [87]. From the finitist
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proof of the consistency of PRA sketched by Hilbert in [47] (the reader can find an English
translation in [29, pp. 1136–1148]), we know that finitist reasoning is strictly stronger
than PRA. Nevertheless, we use EA as the basic theory for our considerations. It is a
sub-theory of PRA.

Our results state a form of completeness that partially fulfils Hilbert’s goals from
late 1930 and mid-1931 in [46] and [45]. In the following remark from [89, pp. 160–
161] regarding HP after the incompleteness results, A is a quantifier-free, finitistically
meaningful formula:

Hilbert’s rule (HR) is viewed as finitist and allows the introduction of uni-
versally quantified formulae (x)A(x) as initial ones, just in case the numeric
instances A(z) have been established finitistically as correct for arbitrary nu-
merals z.

This idea was formulated in [46] and then generalized by Hilbert in [45], where A is no
longer required to be quantifier-free, but can be a formula of arbitrary syntactic complex-
ity.

If the statement A(z) is correct as soon as z is a numeral, then the statement
(x)A(x) holds; in this case (x)A(x) is called correct.

For this version of HP, it su�ces to confirm all the numerical instances in a broader
methodological frame in order to conclude the correctness of the universally quantified
statement.22

In our discussion we introduce an informal term, ‘codification of a formula '’ or simply
‘codification of '’. We are using this term with the broad meaning of “expressing the
considered sentence '”. Intuitively speaking, a formula '⇤ codifies ' if ' and '⇤ express
the same content instance-wise. For example, 8x. (x) and 8x.Pr⌧(p (

•
x)q), with  (x) a

⌃1-formula, codify each-other when ⌧ is a numeration of a ⌃1-complete and ⌃1-sound
theory. In semantic terms, one statement cannot hold instance-wise without the other
one doing so as well. As the extreme trivial case, any formula codifies itself. The general
notion of codification is an intuitive one; we emphasize that the results of this chapter do

not depend on it, as we considered only the particular codifications ~Q ~x .Pr⌧(p (
•
~x )q).

With this concept of “codification” one can articulate a more general form of HP:

1. If ' is a true sentence and '⇤ is a codification of ', then '⇤ is provable in a fixed
theory of arithmetic.

22For the immediate historical context, see [89, pp. 174–175]. There is, first of all, the recognition
formulated by Bernays in a letter to Hilbert that was written on October 11, 1931; namely, that this is an
extension of the finitist standpoint. Then there is, secondly, the fact that Gentzen intended to complete
Hilbert’s consideration in late 1931 and early 1932 in order to obtain a consistency proof of full arithmetic
(in his “Urdissertation”). HR should not be confused with the !-rule in semi-formal systems. For a historical
discussion of the relation of HR and the!-rule see [53]. Thirdly, in Herbrand’s last paper [43], the consistency
of a theory is established that includes the restricted form of HR.
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2. If Con is a standard consistency statement for a consistent theory and Con
⇤ is a

codification of that statement, then Con
⇤ is provable in a fixed theory of arithmetic.

The Incompleteness Theorems show that the goals 1 and 2 cannot be fulfilled, as they
present witnesses of the falsity of the stated universal claims. The First Incompleteness
Theorem witnesses the falsity of 1: there is a sentence such that its trivial codification is
not provable in the considered theory of arithmetic. The Second Incompleteness Theorem
falsifies 2 with the trivial codification of the standard consistency statement. But what
about the existential statements corresponding to 1 and 2? Are they also necessarily
false on account of the Incompleteness phenomenon? More precisely, are the following
intuitive goals achievable:

1’. For every true sentence ', there is a codification '⇤ provable in a fixed theory of
arithmetic.

2’. There is a formula Con⇤ that codifies the consistency statement for a given consistent
theory and is provable in a fixed theory of arithmetic.

We proved that these goals can be achieved. Hilbert’s work has been interpreted and
adapted to today’s logical framework in the very strong form 1 and 2, even after Gödel’s
Incompleteness Theorems had been found. If one interprets HP as 1’ and 2’, then it
is, in a sense that we will make precise, achievable. Thus, our analysis complements
the Incompleteness results by a dual counterpart: while the Incompleteness Theorems
state the falsity of the universal statements of 1 and 2, we established the existential
statements 1’ and 2’. These facts do not contradict but rather complement each other. A
more detailed account of the notion ‘codification’ falls under the scope of intensionality.
That is not the focus of our chapter and is not essential for understanding our results and
their connection to HP.

We proved that, for every formula ~Q ~x .'(~x ) that is true in N, there is a numeration

⌧ of the axioms of EA such that EA ` ~Q ~x .Pr⌧(p'(
•
~x )q). This constitutes a (weak) form

of syntactic completeness because we created a syntactic interpretation for each true
formula: from the given true formula ~Q ~x .'(~x ), one obtains directly its codification
~Q ~x .Pr⌧(p'(

•
~x )q) which states that under the scope of ~Q ~x , EA can internally and numeral-

wise prove '(~x ). These ideas make use of the following definition; namely, a function f

is truth-preserving if whenever ' is a true formula in N, so is the formula whose code is
f (#').

Theorem 5.9.1. Given a sound theory T and a numeration ⌧ of T :

1. The following is false: for every truth-preserving function f definable in T , if ' is a true
formula, then T ` Pr⌧(f (#')).

2. There is a truth-preserving function f definable in T such that if ' is a true formula,
then T ` Pr⌧(f (#')).
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Proof. 1 follows from G1 by considering f as the identity function, and 2 follows from
our Numeral Completeness result, since the function f such that

f (#[ ~Q ~x .'(~x )]) := #[ ~Q ~x .Pr⌧(p (
•
~x )q)],

with ⌧ from the mentioned result, is definable in T and is truth-preserving. a

We used the formula ~Q ~x .Pr⌧(p'(
•
~x )q) to provably codify the fact that the formula

~Q ~x .'(~x ) is true. That is interesting in its own right, but is especially relevant since we
proved completeness for this codification. In sum, the First Incompleteness Theorem
guarantees that some formula ~Q ~x .'(~x ) is not provable, whereas our result ensures its

codification ~Q ~x .Pr⌧(p'(
•
~x )q) is. Notice that this fact holds for a suitable numeration

⌧, and that ⌧ depends on the initial formula: for each formula such a numeration is
guaranteed to exist, but there is no single numeration for all formulas.

We formulated in an analogous way a codification of consistency that we called Nu-
meral Consistency: for every �1(EA)-proof predicate Prf for a consistent theory T , there
is a ⌃1(EA)-numeration ⌧ of the axioms of EA such that EA ` 8x.Pr⌧(p¬Prf (p?q,

•
x)q). The

latter claim asserts, EA can prove, numeral-wise and under a ⌃1-provability predicate,
that no natural number is the code of a proof of ? according to the proof predicate Prf .
Keep in mind that establishing a property using Feferman’s dot notation is enough to
guarantee that it holds for all natural numbers. These two facts—Numeral Completeness
and Numeral Consistency—yield the fulfilment of a form of HP when articulated by 1’
and 2’.

The connection of the Completeness result with HP has yet another facet, namely,
one can show that a codified version of HR is provable. Let us analyze this carefully.
Assume that A(x) is a quantifier-free formula that has been established finitistically for
each numeral z. From the Completeness result, it follows, for a suitable numeration ⌧,
EA ` 8x.Pr⌧(pA(

•
x)q). Thus, EA—a finitist theory—can, from the premises of HR, confirm

that 8x.A(x) is a formula that must hold for the natural numbers23. Our form of HR can
be summarized in the following way: given a quantifier-free formula A,

A(z), for all numerals z

E

⌧.EA ` 8x.Pr⌧(pA(
•
x)q)

where

E

represents the existential quantifier in the meta-language24—these considera-
tions can also be carried through for the unrestricted form of HR.

23Here one clearly makes an additional assumption, namely that the premises of HR are established as
correct in a finitist theory T (and that ⌧ numerates T ).

24The numeration ⌧ may be di↵erent for di↵erent formulas A.
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6
Provability Implies Provable Provability

6.1 Introduction

The derivability condition ‘provability implies provable provability’, namely Pr⇠ (x)!
Pr⇠ (pPr⇠ (

•
x)q), is very sensitive to the basis theory one is considering. In this paper, we

study it using the computational complexity class FLINSPACE. Let us now make some
introductory remarks.

E2 is a class of functions over N defined by the closure of a set of initial functions
under composition and bounded recursion. It belongs to a hierarchy of classes En intro-
duced by Grzegorczyk in [38] and that characterizes the primitive recursive functions
[19, pp. 458, 459]; Sieg in [88] calls it the G-hierarchy. Grzegorczyk’s class M2 has a
similar definition, but for it one substitutes bounded recursion for closure under bounded
minimization (µ) (see [17, Definition 3.47] and [23]); like E2, the class M2 belongs to a
hierarchy of functions Mn. For n � 3, Mn = En [19, Theorem 6.3.20], but for n = 2 this
is still an open problem (conferatur [19, p. 460], [81, p. 110]). E2 and M2 correspond to
FLINSPACE (linear space) and FLTH (linear time hierarchy), respectively. It is also known
that the definable functions of the theory I�0 are exactly the functions in M2 [23].

We develop a theory of arithmetic for FLINSPACE (the same as the class E2) that we
call G2 (the number ‘2’ in ‘G2’ stands for the ‘2’ in ‘E2’, and the letter ‘G’ stands for
‘Grzegorczyk’), clearly not to be confused with Gödel’s Second Incompleteness Theorem;
‘G’ is also used in reference to the name G-hierarchy from Sieg’s [88]. G2 is similar to the
theory IE2

⇤ of Woods from [103] (see also [26] and [5]), but the basis functions are not
the same (we have the 0 and 1 functions, as well as projections in the basis); moreover,
we account for subtleties in the definition of the bounded recursion schema, namely in
giving a name to the created functions and in the way we state the schema using the min
function—usually, to define IE2

⇤ , one adds a function-symbol to each function in E2 and
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the respective definition axiom, but in our context, we explicitly develop a particular way
of doing so that is going to be useful to establish, for instance, Theorem 6.3.3 and that to
guarantee that G2 is recursively enumerable. In a sense, G2 is a specific way to construct a
version of IE2

⇤ . The latter, and consequently G2, is a very useful theory to study, in a weak
arithmetic setting, several results from Number Theory; the key feature is that IE2

⇤ allows
a form of counting, see [24] for an example of such an approach, where Cornaros studies
the quadratic reciprocity law using that theory.

The fact that we develop a theory for FLINSPACE that includes I�0, like IE2
⇤ , is going to

be useful. This feature does not hold for some of the theories one can find in the literature,
for instance the theory for FLINSPACE from [96]; this feature, and the way we name the
E2-functions, is especially useful to establish su�cient conditions for relations between
M2 and E2 (see Theorem 6.3.3). As it is unknown whether M2 = E2, it is a forteriori an
open problem whether G2 is a conservative extension of I�0.

We follow closely some of the constructions made in [34] for the theory PTCA; we, in
addition, use some definitions and results from [23].

After a quick bootstrapping1 of G2, we study the main focus of our chapter, namely
“provability implies provable provability” in G2: Pr⇠ (x)! Pr⇠ (pPr⇠ (

•
x)q). This conditions

is very sensitive in terms of the basis theory, especially if it is weak; for example, it is in
general an open problem for I�0. Our approach is relevant because G2 is an example of
such a weak theory that might even be a conservative extension of I�0 (this is still an open
problem also, since it entails M2 = E2). In a sense, in this chapter, we use the complexity
class FLINSPACE to study the mentioned derivability condition.

We study forms of internal ⌃1-completeness for G2. We prove that if G2 can verify its
axioms, in the sense that, for a suitable G2-function verifier, G2 ` ⇠(x)! Prf⇠ (pPr⇠ (

•
x)q,

verifier(x)), then G2 ` Pr⇠ (x)! Pr⇠ (pPr⇠ (
•
x)q). Moreover, we confirm that the verifier

condition can be dropped if one focuses on just a finite set of axioms (here we include
also a finite number of logical axioms): if PrS(x) is a provability predicate for the finite
set S, then G2 ` PrS(x)! Pr⇠ (pPr⇠ (

•
x)q).

Finally, we present conditions for a numeration ⇠0 of a finitely axiomatizable theory
to satisfy G2 ` Pr⇠0(x)! Pr⇠ (pPr⇠0(

•
x)q).

6.2 The Grzegorczyk class E2

We give two alternative definitions of the Grzegorczyk class E2.

Definition 6.2.1. (1) E2 is the class of functions over N that includes 0,1,+,⇥,

1We use this term in reference to [10, p. 37].
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min,max,⇡
k

j
, that is closed for composition, and for bounded recursion: f ( ~m ,n) is de-

fined by bounded recursion from g,h,k if f ( ~m ,n)  k( ~m ,n) and:

f ( ~m ,0) := g( ~m ); (BR)

f ( ~m ,n+1) := h( ~m ,n,f ( ~m ,n)).

(2) Alternatively, E2 coincides with the class that includes the functions 0,1,+,⇥,min,max,⇡k

j
,

that is closed for composition, and that is closed under the following form of bounded
recursion: given f , g , and k already in the class, then the following function also is in
the class

f ( ~m ,0) := min(g( ~m ), k( ~m ,0)); (BRmin)

f ( ~m ,n+1) := min(h( ~m ,n, f ( ~m ,n)), k( ~m ,n+1)).

Item (1) corresponds to the “classic” definition of E2, see [25], and (2) is, essentially,
the caractherization of E2 presented in [5]. Clearly, we can omit the min function in the
first equation of BRmin, we could have written f ( ~m ,0) := g( ~m ); we decided to still have
it because it immediately gives the bound k for f . The item (2) of the Definition above
plays a main role in our work because it yields a recursively enumerable theory (G2) and
because it allows to establish facts that are similar to the ones from [34]. Each part of the
definition of our theory G2 corresponds to a part of this characterization of E2. The next
result is of major importance.

Fact 6.2.1. E2 = FLINSPACE.

Proof. See [23] (we recommend [19, pp. 461, 469] for further details). a

FLINSPACE is the class of functions computable in linear space by deterministic Turing
Machines. We consider Turing Machines computing functions over 0 � 1 words, while
E2 is a class of functions over N. So, for a function f 2 FLINSPACE we write f 2 E2 (and
vice-versa) under the standard bijection from 0� 1 words and N. This is used extensively
along the chapter, without further notice.

Theorem 6.2.1. For each function f 2 E2, we can construct a polynomial pf such that f  pf

(this statement is also provable in the theory G2 that we are going to develop).

Proof. Immediate by induction using the definition of E2. a

The following observation confirms that the function that sums inputs is also in E2.

Observation 6.2.1. Suppose that f is in E2. Let us see that the function sumf defined by

8>>><>>>:

sumf (~x ,0) := f (~x ,0);

sumf (~x ,y +1) := sumf (~x ,y) + f (~x ,y +1)
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is also in E2. sumf can be defined by recursion, the challenge is to ensure the bound. From
Theorem 6.2.1, we know that f  pf , so

sumf (~x ,y) =
yX

i=0

f (~x , i) 
yX

i=0

pf (~x , i).

Let us write pf in the following way (this is always possible to perform)

pf (~x , i) =
X̀

m=0

pm(~x )⇥ ikm ,

where pm are polynomials on ~x , and km are suitable constants. So,

yX

i=0

f (~x , i) 
yX

i=0

X̀

m=0

pm(~x )⇥ ikm 
X̀

m=0

yX

i=0

pm(~x )⇥ ikm


X̀

m=0

0
BBBBB@pm(~x )⇥

yX

i=0

i
km

1
CCCCCA .

From [16], we know that the inner polynomials are Faulhaber polynomials onQ, more
specifically

yX

i=0

i
km =

1
km +1

km+1X

j=0

 
km +1

j

!
(�1)km+1�j ⇥Bkm+1�j ⇥ yj ,

where Bj denotes the j-th Bernoulli number. So, the previous polynomial can be bounded
by a polynomial qm(y) with coe�cients on N, yielding

Py

i=0 i
km  qm(y), and consequently

sumf (~x ,y) =
yX

i=0

f (~x , i) 
X̀

m=0

pm(~x )⇥ qm(y),

which implies that sumf is in E2.

6.3 A theory for FLINSPACE

The theory that we are going to develop here is a theory in first-order classical logic over
a language Lwhich extends {0,S,+,⇥,=,} by allowing further function-symbols. Let us
settle some well-known definitions.

Definition 6.3.1. 1.(�0(L)-formulas) �0(L)-formulas, also called bounded formulas, are
defined recursively. If t0 and t1 are terms of L, then t0 = t1 and t0  t1 are bounded
formulas; and if A and B are are bounded formulas and t is a term, then so are: ¬A,
A^B, 8z  t.A, and 9z  t.A (A can have free variables besides z, and it can also be
a sentence).2

2We are assuming, without loss of generality, {¬,^,8,9} as the logical basis and that _, ! are defined
accordingly.
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2.(⌃1(L)-formulas) A formula A is a ⌃1(L)-formula if it is of the form 9~y .B, with B a
bounded formula (possibly with several free variables).3

3.(�(T )-formula) A formula ' is a �(T )-formula if there is a �-formula '0 that is T -
equivalent to ' (we tacitly consider the language L of the theory T ).

We omit the Lwhenever there is no danger of ambiguity.

For the next definition, we are following [23].

Definition 6.3.2. Let T be a ⌃1-sound theory in L. A function f : Nn! N is definable in
T if there is a ⌃1(L)-formula '(~x ,y) of T such that:

R1: T ` 8~x .9!y.'(~x ,y);

R2: For all a1, . . . , ak,b 2 N, f (~a ) = b () N |= '(~a ,b).

We denote the class of functions definable in T by R(T ) (‘R’ stands for ‘recursive’).

Now we define our theory G2 for FLINSPACE.

6.3.1 The theory G2

We describe simultaneously the theory G2 and its language L.

Definition 6.3.3. G2 is formulated in a language L containing a constant 0, a relation-
symbol  (besides =), and function-symbols S, +, ⇥, min, max, ⇡k

j
with non-logical axioms:

Arithmetic:

A1. S(x) 6= 0;

A2. S(x) = S(y)! x = y;

A3. x +0 = x;

A4. x + S(y) = S(x + y);

A5. x ⇥ 0 = 0;

A6. x ⇥ S(y) = (x ⇥ y) + x;

A7. x  y$9z.x + z = y;

A8. x = 0_9y.x = S(y);

A9. min(x,y) = z$ .(x  y ^ z = x)_ (y  x^ z = y);

A10. max(x,y) = z$ .(x  y ^ z = y)_ (y  x^ z = x);

A11. ⇡k

j
(x0, . . . ,xk) = xj .

3A di↵erent definition could have been considered at this point by including the �0(L)-formulas in the
⌃1(L)-formulas. Both definitions work in our context.
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Composition: Given function-symbols f ,g0, . . . , gk , we consider a new
function-symbol COMP[f ;g0, . . . , gk] in L and the following axiom in G2

COMP[f ;g0, . . . , gk](~x ) = f (g0(~x ), . . . , gk(~x )).

Bounded recursion: For each terms t0, t1, and t2 we add a function-symbol BRmin[t0, t1; t2]
to L and the following axioms in G2

BRmin[t0, t1; t2](~x ,0) = min(t0(~x ), t2(~x ,0));

BRmin[t0, t1; t2](~x ,S(y)) = min(t1(~x ,y,BRmin[t0, t1; t2](~x ,y)), t2(~x ,S(y))).

�0-Induction: If B is a �0(L)-formula4, then the following formula is also an axiom

B(0)^8y.(B(y)! B(S(y))).!8x.B(x).

It is immediate that G2 includes I�0 and extends its language (yet, it is not known if
it is a conservative extension, since it is unknown whether M2 = E2). All functions in E2

are directly definable in G2.
In the following, to improve readability, while defining function(-symbol)s by BRmin,

whenever the existence of the bound t2 is obvious, we omit it and we neglect the occur-
rence of min in BRmin.

Proposition 6.3.1. For each bounded formula B, there is a function-symbol �B such that5

G2 ` (B(~x )! �B(~x ) = 1)^ (¬B(~x )! �B(~x ) = 0).

Proof. Clearly, by definition of G2, for every term t, there is a function-symbol f such
that G2 ` f (~x ) = t(~x ) (this follows from the recursive definition of the terms and the
composition axiom). Let us prove the result by induction on the complexity of B. As
the function �= is in E2, we can represent it by a function-symbol (let us use the same
symbol to denote the function-symbol)6; we can define in a similar way � 6=. It is also
straightforward to define �.

Define �¬B(~x ) := �=(�B(~x ),0), and �B^C(~x ) := �B(~x )⇥�C(~x ), whenever �B is already
defined. Suppose B(~x ,y) is 8z  y.C(~x ,z) and that �C is already defined. Consider f
defined by BRmin (omitting t2 and min)

8>>><>>>:

f (~x ,0) := �C(~x ,0);

f (~x ,S(z)) := f (~x ,z)⇥�C(~x ,S(z)).

4Ldenotes the constructed language for G2 with all the added function-symbols.
5For simplicity, we are considering 1 := S(0); of course in the context of numerals (that appears in the

following sections), we also consider 1 := S(0).
6We use the 1 for the a�rmative case, i.e.

�=(x,y) :=

8>><>>:
1, x = y

0, x 6= y
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Clearly, the function f is in E2, and so we are allowed to use the symbol f as the function-
symbol denoting the mentioned function. Define �B(~x ,y) := �=(f (~x ,y),1). If B0(~x ,y) is
9z  y.C

0(~x ,z) and �C 0 is already defined, then we set �B0 (~x ,y) := �=(�8zy.¬C 0(~x ,z)(~x ,y),0).
a

Proposition 6.3.2. Given bounded formulas A0(~x ), . . . ,An(~x ) and function-symbols f0(~x ), . . . ,
fn+1(~x ), there is a function-symbol f (~x ) such that

G2 `(A0(~x )^ f (~x ) = f0(~x ))_ (¬A0(~x )^A1(~x )^ f (~x ) = f1(~x ))_ · · ·_
(¬A0(~x )^ · · ·^¬An(~x )^ f (~x ) = fn+1(~x )).

Proof. The general result follows by induction on the construction of the result for n = 1;
so, let us prove the result for n = 1. Define

f (~x ) := (�A0
(~x )⇥ f0(~x )) + (�¬A0^A1

(~x )⇥ f1(~x )) + (�¬A0^¬A1
(~x )⇥ f2(~x )).

a

Proposition 6.3.3. For each bounded formula B(~x ,y), there is a function-symbol f such that
G2 ` 9y  z.B(~x ,y)! f (~x ,z)  z^B(~x , f (~x ,z)).

Proof. Define f by BRmin (again, omitting t2 and min)
8>>>>>>>>><>>>>>>>>>:

f (~x ,0) := �¬B(~x ,0);

f (~x ,S(y)) :=

8>>>>>><>>>>>>:

f (~x ,y), f (~x ,y) < S(y)^B(~x , f (~x ,y))
S(y), ¬f (~x ,y) < S(y)^B(~x ,S(y))
S(S(y)), otherwise.

a

Proposition 6.3.4. If M |= G2 and N is a substructure of M, then N |= G2.

Proof. We prove, by induction on the complexity of B, that bounded formulas are absolute.
The only hard step is to argue when B(~x ,y) is 8z  y.C(~x ,z). Consider ~a and b in N. It is
clear, by induction hypothesis, that if M |= B(~a ,b), then N |= B(~a ,b). Let us argue for the
reciprocal. Suppose M◆◆|=B(~a ,b). Then, by the previous result, there is a function-symbol
f such that f (~a ,b)  b and M◆◆|=C(~a , f (~a ,b)). Using the induction hypothesis and the fact
that f (~a ,b) is defined in N, we conclude that N◆◆|=B(~a ,b).

The absoluteness of the bounded formulas implies the induction axiom in N: for a in
N, and any bounded formula B,

M |= B(0)^8y  a.(B(y)! B(S(y))).! B(a);

by absoluteness this holds in N, and from logic we obtain the induction axiom. a

Theorem 6.3.1. If B(~x ,y) is a bounded formula and G2 ` 8~x .9y.B(~x ,y), then there is a
function-symbol f such that G2 ` 8~x .B(~x , f (~x )).
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Proof. From the previous Proposition and Lo‰-Tarski Theorem [49, p. 143], we know that
G2 is a universal theory. The result follows from Herbrand’s Theorem [14, Theorem 1]
and Proposition 6.3.2. a

Theorem 6.3.2. If B(~x ,y,~z ) is a bounded formula and G2 ` 8~x .9y.9~z .B(~x ,y,~z ), then there is
a function-symbol f such that G2 ` 8~x .9~z .B(~x , f (~x ),~z ).

Proof. This result is a straightforward consequence of the previous result, since there
is a pairing function hx,yi in E2, such that the respective projections are are in E2, see
[25]. a

Corollary 6.3.1. R(G2) = E2.

Proof. It is clear that each function in E2 is definable in G2. The previous result ensures
the converse direction. a

6.3.2 A relation between E2 and M2 using G2

The next observation presents a su�cient condition to the setting of Theorem 6.3.3 in
this section.

Observation 6.3.1. Assume, in this observation, that there is a �0(I�0)-definable function
� in E2 such that, for each m0, . . . ,mn�1, there is c such that �(c,n, i) = mi . Assume also
the existence of functions seqn in E2, of a concatenation function ⇤, and a polynomial p
satisfying:

1. �(seqn(m0, . . . ,mn�1),n, i) =mi ;

2. seqn(m0, . . . ,mn�1) ⇤mn = seqn+1(m0, . . . ,mn);

3. seqn(m0, . . . ,mn�1)  p

⇣P
n�1
i=0 mi,n

⌘
.

Given a function f in E2, define computationf by

8>>><>>>:

computationf (~x ,0) := seq1(f (~x ,0));

computationf (~x ,y +1) := computationf (~x ,y) ⇤ f (~x ,y +1).

Observe that

computationf (~x ,n) = seqn+1(f (~x ,0), . . . , f (~x ,n))  p

0
BBBBB@

nX

i=0

f (~x , i),n+1

1
CCCCCA

 p(sumf (~x ,n),n+1).

From Observation 6.2.1, sumf is in E2 when f is, so computationf is also in E2 when
f is.
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The next result show that if I�0 has a definable �-function, then M2 = E2; to establish
it, we use the theory G2—this result relies on the fact that G2 extends I�0, so other theories
for E2, like the one from [96], cannot be used in this context.

Theorem 6.3.3. Suppose there is a function-symbol �, a �0(I�0)-formula B, and, for each
function-symbol f of G2, a function-symbol computationf satisfying:

B1. G2 ` B(x,y,z,v)$ �(x,y,z) = v;

B2. G2 ` u  y! �(computationf (~x ,y),S(y),u) = f (~x ,u).

Then, M2 = E2.

Proof. Let us define an auxiliary theory G0
2, that is a version of G2, but without extending

the language of I�0. The theory G0
2 extends the axioms of I�0 and has the following extra

axioms stating the totally of bounded formulas Ff , for each f in E2:

Basis: It is easy to construct bounded formulas (of I�0) Ff representing the basis func-
tions of E2, i.e. for f 2 {0,1,+,⇥,min,max,⇡k

j
}; add accordingly the respective axioms

8~x .9!y.Ff (~x ,y).

Composition: Given g,h0, . . . ,hk in E2 such that the bounded formulas Fg ,
Fh0

, . . . ,Fhk
were already constructed and the respective axioms added; define7

FCOMP[g ;h0,...,hk ](~x ,y) :=

9z0  p0(~x ). · · ·9zk  pk(~x ).

0
BBBBB@

k̂

i=0

Fhi
(~x ,zi )

1
CCCCCA^Fg (z0, . . . , zk,y),

where pi is a polynomial bounding hi (see Theorem 6.2.1), and add the axiom
8~x .9!y.FCOMP[g ;h0,...,hk ](~x ,y).

Bounded Recursion: If f is defined by bounded recursion from g and h with bound k,
we define

Ff (~x ,y,z) := 9c  P(~x ,y).(9r, r 0  pg (~x ).9r 00  pk(~x ,0).B(c,S(y),0, r 0)

^Fg (~x , r)^Fk(~x ,0, r 00)^ r 0 = min(r, r 00))^8u  y.(u 6= y!
9r  pk(~x ,S(u)).9w  pf (~x ,u).9v  ph(~x ,u,w).9v0  pf (~x ,S(u)).

B(c,S(y),u,w)^B(c,S(y),S(u), v0)^Fh(~x ,u,w,v)^Fk(~x ,S(u), r)
^ v0 = min(v, r))^B(c,S(y), y, z),

where P is a polynomial bounding computationf from Theorem 6.2.1, pg is a poly-
nomial bounding g , pf is a polynomial bounding f , and pk bounding k; and we add
the axiom 8~x .8y.9!z.Ff (~x ,y,z).

7The use of ‘min’ can be substituted by the suitable formula in order to have the same language as I�0.
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It is straightforward that E2 ✓R(G0
2).

Let us argue that, for each function f in E2, G2 ` 8~x .9!y.Ff (~x ,y). It is immediate that
G2 ` I�0 ` Basis. If G2 ` 8~x .9!zi .Fhi (~x ,zi), for 0  i  k, and G2 ` 8~x .9!y.Fg (~x ,y), then,
from Theorem 6.3.1, there are function-symbols g,h0, . . . ,hk (representing, respectively,
the considered functions) such that

G2 ` Fg (~x ,y)$ g(~x ) = y;

G2 ` Fhi (~x ,y)$ hi(~x ) = y, 0  i  k.

From the previous facts and Theorem 6.2.1, we get G2 ` 8~x .9!y.FCOMP[g ;h0,...,hk ](~x ,y). So,
G2 ` Composition. Now, assume thatG2 ` 8~x .9!y.Fg (~x ,y) and alsoG2 ` 8~x .8y.9!z.Fh(~x ,y,z),
and that f is in E2 and can be defined using bounded recursion from g and h, with bound
k. From Theorem 6.3.1, we can guarantee function-symbols g , h, and k such that

G2 ` Fg (~x ,y)$ g(~x ) = y; G2 ` Fh(~x ,y,z,v)$ h(~x ,y,z) = v;

G2 ` Fk(~x ,y,z)$ k(~x ,y) = z.

Let f denote BR[g,h;k]. We can guarantee the existence of a function-symbol computationf
satisfying B1 and B2.

Reason insideG2. Consider ~x and y arbitrarily fixed and take c to be computationf (~x ,y).
Clearly, computationf (~x ,y)  P(~x ,y), because P is a polynomial bounding the function
computationf . Moreover, it is straightforward that g(~x )  pg (~x ) and �(c,S(y),0) = f (~x ,0) =
min(g(~x ), k(~x ,0)), hence, by considering r := g(~x ), r 00 := k(~x ,0), and r

0 := f (~x ,0), we have

9r, r 0  pg (~x ).9r 00  pk(~x ,0).B(c,S(y),0, r 0)^Fg (~x , r)
^Fk(~x ,0, r 00)^ r 0 = min(r, r 00).

Assume u  y such that u 6= y. Take w := f (~x ,u), v := h(~x ,u, f (~x ,u)), v0 := f (~x ,S(u)),
and r := k(~x ,S(u)). Clearly,w  pf (~x ,u), v  ph(~x ,u,w), v0  pf (~x ,S(u)), and r  pk(~x ,S(u)).
Also, �(c,S(y),u) = f (~x ,u) = w and �(c,S(y),S(u)) = f (~x ,S(u)) = v

0. Moreover,

v
0 = f (~x ,S(u)) = min(h(~x ,u, f (~x ,u)), k(~x ,S(u))) = min(v, r).

Thus, B(c,S(y),u,w)^B(c,S(y),S(u), v0)^Fh(~x ,u,w,v)^Fk(~x ,S(u), r)^ v0 = min(v, r). More-
over, �(c,S(y), y) = f (~x ,y). So, taking z as being f (~x ,y),

8u  y.(u 6= y!9r  pk(~x ,S(u)).9w  pf (~x ,u).9v  ph(~x ,u,w).

9v0  pf (~x ,S(u)).B(c,S(y),u,w)^B(c,S(y),S(u), v0)^Fh(~x ,u,w,v)
^Fk(~x ,S(u), r)^ v0 = min(v, r))^B(c,S(y), y, z).

Stepping outside G2, we establishedG2 ` 8~x .8y.9z.Ff (~x ,y,z), the unicity can also be easily
established; this confirms G2 ` Bounded Recursion. All this entails G2 ` G0

2. In all,

E2 ✓R(G0
2) ✓R(G2) ✓ E2;
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consequently R(G0
2) = E2 (the previous result can also be obtained by adapting the rea-

soning from [34, §4]). From Corollary 2 of [23], we know that if there is a theory T

extending I�0 such that R(T ) = E2, then M2 = E2. As G0
2 is an extension of I�0 with the

same language as I�0 satisfying R(G0
2) = E2, it follows that M2 = E2. a

The conditions of Observation 6.3.1 are su�cient to guarantee the antecedent of the
previous result, namely B1 and B2.

Corollary 6.3.2. Suppose the conditions of the previous Theorem. Then, FLTH = FLINSPACE.

Proof. Follows from the previous result and the two following facts: M2 = FLTH and
E2 = FLINSPACE. a

6.4 Bootstrapping G2

Throughout this section we use the fact that E2 coincides with FLINSPACE, and the fact
that each function in E2 can be represented by a function-symbol in G2, and vice-versa.
We use the term ‘bootstrapping’8 in reference to [10, p. 37]. We confirm that the boot-
strapping procedure also works for G2: we assume that the reader is aware of [39] and
[10]. We assume a fixed sequence-function and its respective �-function, several options
could have been made here, but we are going to consider a fix one.

Definition 6.4.1. We consider the sequence function that assigns, assuming binary nota-
tion, ‘1’7! ‘11’, ‘0’7!‘00’, and ‘,’7!‘01’; so, for example9

h112,12,1012i = 11110111011100112.

It is easy to see that this function, its respective concatenation ⇤, and its respec-
tive �-function are in FLINSPACE (by a �-function, in this context, we simply mean
projection-functions (·)

i
such that (hx0, . . . ,xki)i = xi), and consequently can be repre-

sented in G2 by function-symbols.10 We can define terms and formulas in the usual way
using this sequence-function (see [39, pp. 312, 313]), having �0(G2)-formulas Term(x) and
Formula(x) respectively identifying them (see also [10, pp. 126–135] for more details).11

We assume that a formula is being codified in the order it is written, for example

p9x.(S(x) + y = z)q =hp9q,pxq,p.q,p(q,pSq,p(q,pxq,p)q,p+q,
pyq,p=q,pzq,p)qi.

8This term is used in computer science to describe the operations needed to start a computer, commonly
a small amount of software.

9As usual, ·2 is used to represent binary notation; for example, 1012 = 5.
10This does not contradict Theorem 6.3.3, there the �-function needed to be definable in I�0; these

projections are definable in G2.
11This work because G2 includes I�0, the theory considered in [39, pp. 312, 313]; all the definitions from

[39] work in our context, we just need to adapt them for the sequence function we decided to consider to
simplify our proofs.
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Definition 6.4.2. As usual, we can define a function numeral inside G2 (see [10, p. 29] for
further details) such that:

numeral(0) := hp0qi;
numeral(2⇥ x +1) := numeral(2⇥ x) ⇤ hp+q,p(q,pSq,p(q,p0q,p)q,p)qi;
numeral(2⇥ (x +1)) := hp(q,pSq,p(q,pSq,p(q,p0q,p)q,p)q,p)q,p⇥q,p(qi
⇤ numeral(x +1) ⇤ hp)qi.

The fact that numeral is in G2 follows from the fact that the e�cient numerals12 have
size proportional to the length of the binary representation of the number they denote
[10, p. 29]: the idea is that the suitable Turing Machine that computes numeral will use
an amount of space proportional to the size of the input, it is therefore easy to argue that
numeral is in FLINSPACE, i.e. definable in G2.

The next result serves to illustrate that the standard results of metamathematics are
provable in this context.

Proposition 6.4.1. G2 ` 8x.Term(numeral(x)).

Proof. Let us see that when '(x) is a �0(G2)-formula, if

G2 ` '(0)^8x.('(2⇥ x)! '(2⇥ x +1))^
8x.('(x +1)! '(2⇥ (x +1))),

then G2 ` 8x.'(x). Assume G2 ` '(0)^8x.('(2⇥ x)! '(2⇥ x +1))^
8x.('(x +1)! '(2⇥ (x +1))) and consider �(x) := 8y  x.('(y)^'(y)! '(y +1)) (this is
a �0(G2)-formula). It is not hard to see that G2 ` 8x.9y.x = 2⇥ y _ x = 2⇥ y +1.

Reason in G2. Clearly, �(0). Suppose, by induction hypothesis, that �(x). Then, in
particular,'(x)^'(x)! '(x+1), and so'(x+1). Let us confirm that'(x+1)! '((x+1)+1).
Suppose '(x + 1). We know that 9y.x + 1 = 2 ⇥ y _ x + 1 = 2 ⇥ y + 1. If x + 1 = 2 ⇥ y, as
'(2 ⇥ y)! '(2 ⇥ y + 1) and '(x + 1), it follows '((x + 1) + 1). Suppose x + 1 = 2 ⇥ y + 1.
If x = 0, then we are done; so assume also x > 0. Then, y + 1  x, and so, by induction
hypothesis, '(y + 1). By assumption, '(y + 1)! '(2 ⇥ (y + 1)), and so '(2 ⇥ (y + 1)), i.e.
'((x + 1) + 1). In sum, �(x + 1). All this means that �(x)! �(x + 1). So, 8x.�(x), and
consequently 8x.'(x). Going outside G2, we established G2 ` 8x.'(x).

It is not hard to see that

G2 ` Term(numeral(0));
G2 ` 8x.Term(numeral(2⇥ x))! Term(numeral(2⇥ x +1));

G2 ` 8x.Term(numeral(x +1))! Term(numeral(2⇥ (x +1))).

The result follows from what we have just observed. a
12The e�cient numerals are defined by (see [10, p. 29]):

I0 := 0; I2k+1 := (I2k ) + (S(0)); I2(k+1) := (S(S(0)))⇥ (Ik+1).
We use the notation n := In.
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As we mentioned, the usual metamathematical results from [10] and [39] concerning
the internalized terms and formulas can be obtained in this setting, just like the previous
result.

Definition 6.4.3. We define Feferman’s dot notation using a function-symbol sub of G2

such that, if '(x) is a formula with x being its only free-variable and t a term, G2 `
sub(p'q,ptq) = p'(t)q, and by defining

p'( •x)q := sub(p'q,numeral(x)),

we will also write p'(
•

z}|{
x )q for more complex values of x (we can define in a similar

way the previous notations for several variables). We will assume function-symbols
•
=,

•
,

•!, and

•

z}|{
8x. of G2 satisfying:

G2 `
•
= (n,m) = pn =mq; G2 `

•
 (n,m) = pn mq;

G2 `
•! (p'q,p q) = p'!  q; G2 `

•

z}|{
8~x . (p'(~x )q) = p8~x .'(~x )q.

As usual, we write x
•
= y for

•
= (x,y), x

•
 y for

•
 (x,y), x

•! y for
•! (x,y), and

•

z}|{
8~x . y for

•

z}|{
8~x . (y).

For example, if '(x) := 9y.(x + y = S(0)), then

G2 ` p'(
•
x)q =hp9q,pyq,p.q,p(qi ⇤ numeral(x)

⇤ hp+q,pyq,p=q,pSq,p(q,p0q,p)q,p)qi.

Definition 6.4.4. We say that ⇠ is a numeration of the axioms of a theory T if the set
{n 2 N|G2 ` ⇠(n)} coincides with the set of the codes of the axioms of T . Throughout the
rest of this chapter, we assume that ⇠ denotes a generic �0(G2)-numeration of the axioms
of T that includes G2. For a numeration ⇠ of the axioms of T , we will denote by Prf⇠ the
standard proof predicate for ⇠ as constructed by Feferman in [33]:

Prf⇠ (x,y) :=Sq(y)^¬L(y) = 0^ (8u < L(y).Formula((y)
u
)^

(⇠((y)
u
)_9v < u.9w < u.(y)

v
= (y)

w

•! (y)
u
))

^ x = (y)L(y) •�1,

where L is defined in such a way that G2 ` L(hx0, . . . ,xki) = k +1 and Sq �0(G2)-identifies
all sequences inside G2. Feferman emphasized the logical axioms using another formula,
we do not follow that approach here; we assume that even the logical axioms are codified
in ⇠ . We also denote by Pr⇠ (x) := 9y.Prf⇠ (x,y) the standard provability predicate for ⇠ . It is
clear that if ⇠ is �0(G2), so is Prf⇠ .
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We have the following derivability conditions (see, for instance, [33] for further de-
tails):

C1: T ` ' =) G2 ` Pr⇠ (p'q), this condition is immediate from the ⌃1-completeness of
G2;

C2: G2 ` ⇠ ! Pr⇠ , this condition13 follows from the definition of Pr⇠ and from the fact
that the function n 7! hni is in E2;

C3: G2 ` Pr⇠ (x
•! y)! (Pr⇠ (x)! Pr⇠ (y)); this condition holds because, provably in G2,

if ⇡0 is a proof of x
•! y according to ⇠ and ⇡1 is a proof of x according to ⇠ , then

⇡0 ⇤⇡1 ⇤ hyi is a proof of y according to ⇠ ;

C4: G2 ` Pr⇠ (p8~x .'(~x )q)!8~x .Pr⇠ (p'(
•
~x )q); this condition holds whenever we have G2 `

8Formula(y).8Term(z).⇠(

•

z}|{
8x. y

•! sub(y,z)) (as usual, the formula 8Formula(x).�(x,y)
abbreviates 8x.Formula(x)!�(x,y)).

Condition C3 holds for generic formulas ⇠ , that are not necessarily numerations of
any specific set of axioms14; for this reason, we will assume that G2 includes C3 as its
axiom schema for generic formulas ⇠ (this is constitutes a conservative extension of the
original set of axioms of G2). This means that, for any one-free-variable formula ', we
will assume for Theorem 6.5.2

G2 ` 8Formula(x).8Formula(y).⇠(pPr'(

•

z}|{
x

•! y)! (Pr'(
•
x)! Pr'(

•
y))q). (Assumption 1)

This assumption is not strictly necessary to require, but it will allow some proofs to be
less complex; see Footnote 22. In practice, Assumption 1 might constitute a very subtle
expansion of G2.

6.5 ‘Provability implies provable provability’ in G2

We start this section with a useful result.

Proposition 6.5.1. Assume that ⇠ is such that G2 ` 8x.Term(x) ! ⇠(x
•
= x). Then, G2 `

8x.8y.x = y! Pr⇠ (p
•
x =

•
yq).

Proof. Reason in G2 and suppose x = y. From Proposition 6.4.1, Term(numeral(x)), so
⇠(numeral(x)

•
= numeral(x)). As x = y, then we have numeral(x) = numeral(y), and conse-

quently ⇠(numeral(x)
•
= numeral(y)); so, as G2 ` p

•
x =

•
yq = (numeral(x)

•
= numeral(y)), then

⇠(p •x =
•
yq). The result follows by C2. a

13By ⇠! Pr⇠ we obviously mean 8x.⇠(x)! Pr⇠ (x); we will use this kind of abbreviation throughout this
chapter.

14The justification we gave for C3 su↵cies to conclude this fact for generic formulas when one has in mind
that G2 ` Formula(x)^ Formula(y)$ Formula(x

•! y).
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Throughout the rest of this section, we are going to assume that ⇠ is a�0(G2)-numeration
of a theory T satisfying the conditions of the previous result. The next result is a su�-
cient condition for G2 to prove the internal �0-completeness for ⇠ , and hence the internal
⌃1-completeness (Corollary 6.5.1).

Theorem 6.5.1. Suppose G2 satisfies C4 for ⇠ . If, for every function-symbol f , we have

G2 ` Pr⇠ (p

•

z}|{
f (~x ) = 1q) ! Pr⇠ (pf (

•
~x ) = 1q), then, for every �0-formula A(~x ) of G2, G2 `

A(~x )! Pr⇠ (pA(
•
~x )q).

Proof. Let A(~x ) be a �0-formula. From Proposition 6.3.1 we know that

G2 ` 8~x .(A(~x )$ �A(~x ) = 1).

So, fromC1, G2 ` Pr⇠ (p8~x .(A(~x )$ �A(~x ) = 1)q). FromC4, it followsG2 ` 8~x .Pr⇠ (pA(
•
~x )$

�A(
•
~x ) = 1q).
Now reason in G2. Assume A(~x ). Then, �A(~x ) = 1, and so, from Proposition 6.5.1,

Pr⇠ (p

•

z}|{
�A(~x ) = 1q). By assumption, Pr⇠ (p�A(

•
~x ) = 1q), and thus, using C3, Pr⇠ (pA(

•
~x )q). a

Corollary 6.5.1. Suppose G2 satisfies C4 for ⇠ and that, for every function-symbol f , G2 `

Pr⇠ (p

•

z}|{
f (~x ) = 1q) ! Pr⇠ (pf (

•
~x ) = 1q). If A(~x ) is a ⌃1(G2)-formula, then G2 ` A(~x ) !

Pr⇠ (pA(
•
~x )q).

Proof. Take B(~x ,~y ) a bounded formula such that G2 ` A(~x ) $ 9~y .B(~x ,~y ). From the

previous result, G2 ` B(~x ,~y ) ! Pr⇠ (pB(
•
~x ,

•
~y )q), so G2 ` 9~y .B(~x ,~y ) ! 9~y .Pr⇠ (pB(

•
~x ,

•
~y )q).

We know that G2 ` B(~x ,~y )!9~y .B(~x ,~y ), so G2 ` Pr⇠ (pB(
•
~x ,

•
~y )q)! Pr⇠ (p9~y .B(

•
~x ,~y )q), and

so the result follows. a

Corollary 6.5.2. Suppose G2 satisfies C4 for ⇠ and that, for every function-symbol f , G2 `

Pr⇠ (p

•

z}|{
f (~x ) = 1q)! Pr⇠ (pf (

•
~x ) = 1q). Then,

G2 ` Pr⇠ (x)! Pr⇠ (pPr⇠ (
•
x)q).

Proof. Follows from the fact that, as ⇠ is �0(G2), Pr⇠ (x) is a ⌃1(G2)-formula. a

Now we present one of our main results.

Theorem 6.5.2. ( Under Assumption 1) If there is a function-symbol verifier in G2 such that
it satisfies G2 ` ⇠(x)! Prf⇠ (pPr⇠ (

•
x)q,verifier(x)), then

G2 ` Pr⇠ (x)! Pr⇠ (pPr⇠ (
•
x)q).
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Proof. Consider a function transform0 that, on input y = hy0, . . . , yki (the inputs that are
not sequences do not matter), goes entry-by-entry of the sequence y testing if ⇠(yi) and,
in the positive case, and just for that case, substitutes the content15 of the entry by
the content of verifier(yi). Let us confirm that transform0(y) can be computed using
space linearly bounded by the size of the whole sequence y (and thus transform0 is in
FLINSPACE). Consider y = hy0, . . . , yki and double the FLINSPACE-function that, on input
x, duplicates the occurrences of each digit of the binary representation of x (for example,
double(1012) = 1100112). Then, in terms of strings representing binary notation,

y = double(y0)01 · · ·01double(yk).

For the position i, the Turing machine that computes transform0 starts by reducing
double(yi), in a new tape, to just yi (this needs no extra space, of course besides writ-
ing down yi). After that, it computes—using space bounded by k0 · |yi |, with k0 a fixed
constant—�⇠ (yi); this function is in FLINSPACE because it is definable by the following
�0-formula in G2: (⇠(x)^ z = 1)_ (¬⇠(x)^ z = 0), see Proposition 6.3.1. In the positive
case, the machine substitutes in the original y the position double(yi) for verifier(yi),
using space bounded by k1 · |yi |, with k1 a constant bounding the space used to compute
the function verifier. The whole process yields a computation space bounded by

kX

i=0

(k0 + k1) · |yi |
kX

i=0

(k0 + k1) · |double(yi )| (k0 + k1) · |y|.

This confirms that transform0 is in FLINSPACE, as desired.
Let us describe the Turing Machine TMsimulate. Consider the input y. If y is not

a sequence, then TMsimulate outputs 0. If y = hy0, . . . , yki, then TMsimulate applies to y

the function transform0 and outputs the result to the second tape. Then, starting from
the first entry of the first tape, TMsimulate goes entry-by-entry testing whether there are
j,m < i such that ym = yj

•! yi (videlicet to test if modus ponens was used in that position
of y); in the positive case, TMsimulate substitutes, in the second tape, the content of the
position in the second tape corresponding to position m in the first tape by the content of
hpPr⇠ (

•
ym)q,pPr⇠ (

•
ym)! (Pr⇠ (

•
yj )! Pr⇠ (

•
yi))q,pPr⇠ (

•
yj )! Pr⇠ (

•
yi)qi, and the content of the

position corresponding to position i of the first tape by the content of hpPr⇠ (
•
yi )qi; in the

negative case, the machine just proceeds to the next entry. By corresponding position in
the second tape we mean the position that, before the described changes were applied,
was the considered initial one; this means that, in the previously described situation
where ym = yj

•! yi , if we are in the case ⇠(ym), then verifier was already applied
in the second tape (it terminates in pPr⇠ (

•
ym)q) and now one adds to it the content of

hpPr⇠ (
•
ym)! (Pr⇠ (

•
yj )! Pr⇠ (

•
yi ))q,pPr⇠ (

•
yj )! Pr⇠ (

•
yi )qi.

Let simulate be the function computed by TMsimulate. As we saw before, the appli-
cation of verifier to y has computational space linearly bounded by |y|; moreover, using

15By the content of a given sequence hz0, . . . , zni, we mean the array of elements z0, . . . , zn not under the
sequence function. For example, substituting y0 for the content of hz0, z1, z2i in hy0, y1i yields hz0, z1, z2, y1i.
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a similar argumentation, the second part of the action of simulate also does, since the com-
putation space needed to compute hpPr⇠ (

•
ym)q,pPr⇠ (

•
ym)! (Pr⇠ (

•
yj )! Pr⇠ (

•
yi ))q,pPr⇠ (

•
yj )!

Pr⇠ (
•
yi)qi is linearly bounded on the size of yi ,yj ,ym; thus, that computation space is

bounded by k · (|yi |+|yj |+|ym|), and so the total computational space of the second part of
the action of simulate is bounded by K · |y|, for a suitable constant K .16 All this means
that simulate is in E2.17

Let upto be a function in E2 such that

G2 ` upto(hy0, . . . , yki, j) = hy0, . . . , yji,

let fromto be a function in E2 such that

G2 ` fromto(hy0, . . . , yki, j,m) = hyj , . . . , ymi,

and position a function that, on inputs y and i, gives, whenever y is a sequence, the
position in simulate(y) that corresponds to the same position in i (now under the scope
of pPr⇠ (·)q). The function position is also in E2; to see this, we just need to create a
suitable TM that follows along the computation of TMsimulate and keeps track of the
position corresponding to the initial one.18

Let us reason inside G2. Assume Prf⇠ (x,y), with y = hy0, . . . , yL(y)�
•
1i. Now construct

simulate(y). It is not hard to establish that

G2 ` (simulate(y))position(y,i) = pPr⇠ (
•
yi )q.

Let us see that Prf⇠ (pPr⇠ (
•
x)q,simulate(y)). It is easy to see that the last entry of simulate(y)

16The idea is that to create hpPr⇠ (·)q,pPr⇠ (·)! (Pr⇠ (·)! Pr⇠ (·))q,pPr⇠ (·)! Pr⇠ (·)qi, with the empty slot in-
dicated by ·, we just need a fixed amount of space; then we substitute the empty slot · by double(numeral(ym)),
double(numeral(yi )), and double(numeral(yj )) accordingly; the numeral gives the Gödel-number of the nu-
meral of ym, and the double function accounts for the sequence formation. Clearly, the space needed to
perform these actions is proportional to |ym |+|yi |+|yj |, id est proportional to yk .

17Let us give a toy example here. If we are given y = hy0, y0
•! y1, y1i, with ⇠(y0)

and ⇠(y0
•! y1), then firstly we use the function transform0 to write in the second tape

h · · · ,pPr⇠ (
•
y0)q

|          {z          }
proof of Pr⇠ (y0)

, · · · ,pPr⇠ (

•

z   }|   {
y0

•! y1)q
|                  {z                  }
proof of Pr⇠ (y0

•! y1)

, y1i. After that, we use the second part of the proceedure of

simulate to obtain h· · · ,pPr⇠ (
•
y0)q, · · · ,pPr⇠ (

•

z   }|   {
y0

•! y1)q,pPr⇠ (

•

z   }|   {
y0

•! y1) ! (Pr⇠ (
•
y0) ! Pr⇠ (

•
y1))q,pPr⇠ (

•
y0) !

Pr⇠ (
•
y1)q,pPr⇠ (

•
y1)qi. So, from a proof of y1 we obtained a proof of Pr⇠ (y1).

18In the example of Footnote 17, the position corresponding to y0 is the one with pPr⇠ (
•
y0)q, the position

corresponding to y0
•! y1 is the one with pPr⇠ (

•

z   }|   {
y0

•! y1)q, etc.
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is, by construction, pPr⇠ (
•
x)q. Let us argue by induction19 on i < L(y) that

8i < L(y).Prf⇠ ((simulate(y))position(y,i),upto(simulate(y),position(y, i));

this is possible since the needed formula is �0(G2). Clearly, y0 needs to be an axiom
according to ⇠ , and so the corresponding position in simulate(y) is verifier(y0), a proof
of pPr⇠ (

•
y0)q. Suppose that the result holds for all j  i < L(y) and that S(i) < L(y). By

induction hypothesis,

Prf⇠ ((simulate(y))position(y,i),upto(simulate(y),position(y, i)).

Let us see that

Prf⇠ ((simulate(y))position(y,S(i)),upto(simulate(y),position(y,S(i))).

By construction, the last element of upto(simulate(y),position(y,S(i))) is exactly
(simulate(y))

position(y,S(i)), so it remains to confirm that, in fact, upto(simulate(y),
position(y,S(i))) is a proof.

As S(i) < L(y), then ⇠(yS(i)) or there are j,m < S(i) such that ym = yj

•! yS(i). If ⇠(yS(i)) is
the case, then

fromto(simulate(y),S(position(y, i)),position(y,S(i)))

is verifier(yS(i)) with some possible added parts after the application of the second part
of the procedure defining TMsimulate to the previous entries; as verifier(yS(i)) is a proof
and the potential added parts arising from the second part of the procedure do not change
its proof nature (since they make use of an axiom and codify a sound reasoning, namely
one use of modus ponens), we know that

upto(simulate(y),position(y,S(i))) = upto(simulate(y),position(y, i))

⇤ fromto(simulate(y),S(position(y, i)),position(y,S(i)))

is also a proof. Now suppose that j,m < S(i) are such that ym = yj

•! yS(i). If m < i, then,
up to applications of the second part of the definition of simulate that do not interfere
with the considered position,

upto(simulate(y),position(y,S(i))) =

upto(simulate(y),position(y, i)) ⇤ hpPr⇠ (
•
y
S(i))qi

and, by construction of simulate and induction hypothesis20, we have

pPr⇠ (
•
yj )q,pPr⇠ (

•
yj )! Pr⇠ (

•
y
S(i))q 2 upto(simulate(y),position(y, i)),

19In fact, here we need to use a provable form of strong induction for G2, namely

G2 ` '(0)^ (8i.(8j  i.'(j))! '(S(i)))!8i.'(i),
and '(i) := i < L(y)! Prf⇠ ((simulate(y))position(y,i),upto(simulate(y),position(y, i)). See [39, pp. 35, 63]
for further details on strong induction.

20This is the step that requires strong induction for one to be sure that pPr⇠ (
•
yj )q was already present in

the previous construction.
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so upto(simulate(y),position(y,S(i))) is a proof21. Now, suppose m = i. Then, we have
that (simulate(y))

position(y,i) = pPr⇠ (
•
ym)q and

fromto(simulate(y),S(position(y, i)),position(y,S(i))) =

hpPr⇠ (
•
ym)! (Pr⇠ (

•
yj )! Pr⇠ (

•
y
S(i)))q,pPr⇠ (

•
yj )! Pr⇠ (

•
y
S(i))q,pPr⇠ (

•
y
S(i))qi

from the definition of simulate. As pPr⇠ (
•
ym)! (Pr⇠ (

•
yj )! Pr⇠ (

•
y
S(i)))q is, by Assumption

1 on ⇠ defining G2, an axiom22 and, from the previously considered induction hypothesis,

Prf⇠ ((simulate(y))position(y,i),upto(simulate(y),position(y, i)),

it follows, from what we observed, that

upto(simulate(y),position(y,S(i)))

is a proof.
In sum, we have established the desired result using induction; going outside G2, we

have confirmed that23

G2 ` Prf⇠ (x,y)! Prf⇠ (pPr⇠ (
•
x)q,simulate(y)),

and so G2 ` Pr⇠ (x)! Pr⇠ (pPr⇠ (
•
x)q). a

We are now going to confirm that we can discharge any assumption made on Theorem
6.5.2 under the proviso that we only focus our attention to a finite set of axioms (here we
are also including the logical axioms).

Definition 6.5.1. Given a finite set of axioms (here we are also considering this restriction
to the logical axioms) S= {'0, . . . ,'n} ✓ {'|G2 ` ⇠(p'q)}, we define PrfS(x,y) := Prf✓S(x,y),
where ✓S(x) :=

W
n

i=0 x = p'iq. Furthermore, we define PrS(x) := 9y.PrfS(x,y).

Proposition 6.5.2. G2 ` 8x.8y.(PrfS(x,y)! Pr⇠ (pPr⇠ (
•
x)q)).

21Here we are using the internalized symbol 2 to express that a certain x is an element of the sequence y,
i.e. x 2 y; clearly, this is definable in G2.

22This assumption is not strictly necessary to require, but it allows this proof to be much simpler. It

can be substituted by the assumption that there is f such that G2 ` Prf⇠ (pPr⇠ (

•

z}|{
x

•! y)! Pr⇠ (
•
x

•! •
y)q, f(x,y)).

Let us briefly see why. Consider g such that G2 ` Prf⇠ (a
•! b,x)^ Prf⇠ (b

•! c,y).! Prf⇠ (a
•! c,g(x,y)). We

know that C3 holds, so, by C1 and C4, G2 ` 8x.8y.9z.Prf⇠ (pPr⇠ (
•
x

•! •
y) ! (Pr⇠ (

•
x) ! Pr⇠ (

•
y))q, z). Using

pairing and Theorem 6.3.2 to exploit the fact that Prf⇠ is �0(G2), we can guarantee the existence of h such
that G2 ` 8x.8y.Prf⇠ (pPr⇠ (

•
x

•! •
y)! (Pr⇠ (

•
x)! Pr⇠ (

•
y))q,h(x,y)). Consequently, the mentioned axiom can be

substituted by the use of g(f(x,y),h(x,y)).
23We initially assumed Prf⇠ (x,y) and then used induction, this does not constitute a problem, since

G2 ` (Prf⇠ (x,y)!8i < L(y).�(i))$8i.(Prf⇠ (x,y)! (i < L(y)!�(i))).
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Proof. From Proposition 6.5.1, for 0  i  n,

G2 ` v = p'iq! Pr⇠ (p
•
v = p'iqq).

As G2 ` v = p'iq ! ⇠(v), then G2 ` Pr⇠ (p
•
v = p'iqq) ! Pr⇠ (p⇠(

•
v)q), and so G2 ` v =

p'iq! Pr⇠ (p⇠(
•
v)q). Having in mind that G2 ` ⇠! Pr⇠ and what we just concluded, G2 `

8v.✓S(v)! Pr⇠ (pPr⇠ (
•
v)q). From Theorem 6.3.1, this entails the existence of a function-

symbol verifierS such that

G2 ` ✓S(x)! Prf⇠ (pPr⇠ (
•
x)q,verifierS(x)).

The rest of the result follows from a construction similar to the one presented for the
proof of Theorem 6.5.2; so we can create a function simulate

S such that

G2 ` PrfS(x,y)! Prf⇠ (pPr⇠ (
•
x)q,simulateS(y)).

a

Corollary 6.5.3. G2 ` PrS(x)! Pr⇠ (pPr⇠ (
•
x)q).

Proof. Immediate. a

Definition 6.5.2. We say that ⇠0 is a reasonable numeration if there are formulas '0, . . . ,'n

such that, provably in G2,

⇠0(v)$
⇣
9Formula(x).9Formula(y).v = x

•! (y
•! x)

⌘
_

⇣
9Formula(x).9Formula(y).9Formula(z).
v = (x

•! (y
•! z))

•! ((x
•! y)

•! (x
•! z))

⌘
_

⇣
9Formula(x).9Formula(y).v = ( •¬y •! •¬x) •! (x

•! y)
⌘
_

⇣
9Formula(y).9Variable(x).9Term(t).v =

•

8x.y •! sub(y, t)
⌘
_

⇣
9Formula(y).9Variable(z).9Variable(x).v = (

•

8x.(y •! z))
•! ((

•

8x.y) •! (
•

8x.z))
⌘
_

⇣
9Formula(y).9Variable(x).notfree(x,y)^ v = y

•!
•

8x.y
⌘
_

⇣
9Variable(x).v = x

•
= x

⌘
_

⇣
9Variable(x).9Variable(y).9Formula(z).

v = (x
•
= y)

•! (sub(z,x)
•! sub(z,y))

⌘
_

0
BBBBB@

n_

i=0

v = p'iq
1
CCCCCA .

(We are considering
•

8 such that G2 ` (
•

8pxq.p'q) = p8x.'q, not to be confused with the

similar

•

z}|{
8~x . ; in fact, G2 ` (

•

8pxq.p'q) =

•

z}|{
8x. p'q.) We define the following sets:

A := {x •! (y
•! x), (x

•! (y
•! z))

•! ((x
•! y)

•! (x
•! z)),

( •¬y •! •¬x) •! (x
•! y), y

•! sub(y, t), (
•

8x.(y •! z))
•! ((

•

8x.y) •! (
•

8x.z)),

y
•!

•

8x.y,x •
= x, (x

•
= y)

•! (sub(z,x)
•! sub(z,y))},

and B := {Formula(x),Variable(x),Term(x),notfree(y,x)}.
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In the previous definition, ⇠0 enumerates a finitely axiomatizable theory of first-order
arithmetic; [28, p. 112] confirms that the logical basis we presented is enough.

Theorem 6.5.3. (Under Assumption 1) Suppose that ⇠0 is a reasonable numeration. Assume
also that, for f (~x ) 2Aand �(~x ) 2B:

A: G2 `�(~x )! Pr⇠ (p�(
•
~x )q);

B: G2 ` Pr⇠ (p
•
v =

•

z}|{
f (~x ) q)! Pr⇠ (p

•
v = f (

•
~x )q).

Then, G2 ` Pr⇠0(x)! Pr⇠ (pPr⇠0(
•
x)q).

Proof. Let us focus on the first element of the disjunction characterizing ⇠0. From Propo-
sition 6.5.1, we know that

G2 ` v = x
•! (y

•! x)! Pr⇠ (p
•
v =

•

z        }|        {
x

•! (y
•! x)q).

So,

G2 ` (9Formula(x).9Formula(y).v = x
•! (y

•! x))!

(9Formula(x).9Formula(y).Pr⇠ (p
•
v =

•

z        }|        {
x

•! (y
•! x)q);

by A,

G2 ` (9Formula(x).9Formula(y).v = x
•! (y

•! x))! (9x.9y.

Pr⇠ (pFormula(
•
x)q)^ Pr⇠ (pFormula(

•
y)q)^ Pr⇠ (p

•
v =

•

z        }|        {
x

•! (y
•! x)q).

By B, it follows

G2 ` (9Formula(x).9Formula(y).v = x
•! (y

•! x))! (9x.9y.
Pr⇠ (pFormula(

•
x)q)^ Pr⇠ (pFormula(

•
y)q)^ Pr⇠ (p

•
v =

•
x

•! (
•
y

•! •
x)q).

Using the derivability conditions, we can conclude24

G2 ` (9Formula(x).9Formula(y).v = x
•! (y

•! x))!
9x.9y.Pr⇠ (pFormula(

•
x)^ Formula( •y)^ •

v =
•
x

•! (
•
y

•! •
x)q);

again from the derivability conditions, we obtain25

G2 ` (9Formula(x).9Formula(y).v = x
•! (y

•! x))!
Pr⇠ (p9Formula(x).9Formula(y).

•
v = x

•! (y
•! x)q).

24Here we use the fact, from G2 ` A(~x ) ! (B(~x ) ! A(~x ) ^ B(~x )), we can prove G2 ` Pr⇠ (pA(
•
~x )q) ^

Pr⇠ (pB(
•
~x )q)! Pr⇠ (pA(

•
~x )^B(

•
~x )q).

25In this step, we are using G2 ` A(~x )!9~x .A(~x ) to conclude G2 ` Pr⇠ (pA(
•
~x )q)! Pr⇠ (p9~x .A(~x )q).
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We can prove in a similar way for the other elements of the disjunction characterizing
⇠0 (in particular, the last element of the disjunction was, in a sense, analyzed in the proof
of Proposition 6.5.2). All this yields, using the derivability conditions26, G2 ` ⇠0(v)!
Pr⇠ (p⇠0(

•
v)q), and consequently

G2 ` ⇠0(v)! Pr⇠ (pPr⇠0(
•
v)q).

It is important to observe that ⇠0 is a �0(G2)-formula, since each element of the dis-
junction can be written as a �0-formula; for example, again focusing on the first element,

G2 `(9Formula(x).9Formula(y).v = x
•! (y

•! x))$
(9x  v.9y  v.Formula(x)^ Formula(y)^ v = x

•! (y
•! x)).

From Theorem 6.3.1, we can guarantee the existence of a function-symbol verifier such
that G2 ` ⇠0(x) ! Prf⇠ (pPr⇠0(

•
x)q,verifier(x)). The rest of the proof follows from the

construction used in the proof of Theorem 6.5.2. a

Theorem 6.5.4. (Under Assumption 1) Suppose that ⇠0 is a reasonable numeration. Assume
also that, for f (~x ) 2Aand �(~x ) 2B:

C: G2 ` 9�(~x ).Pr⇠ (p
•
v =

•

z}|{
f (~x ) q)! Pr⇠ (p9�(~x ).

•
v = f (~x )q).

Then, G2 ` Pr⇠0(x)! Pr⇠ (pPr⇠0(
•
x)q).

Proof. Similar to the previous proof. a

6.6 A form of internal completeness in G2

We start this section with a useful proposition that allows us to center the discussion of
internal ⌃1-completeness in G2 in the study of that form of completeness for function-
symbols of G2.

Proposition 6.6.1. The two following statements are equivalent:

A: For all ⌃1(G2)-formulas '(~x ), G2 ` '(~x )! Pr⇠ (p'(
•
~x )q);

B: For all function-symbols f , G2 ` f (~x ) = y! Pr⇠ (pf (
•
~x ) =

•
yq).

Proof. Clearly, A =) B. Let us prove the conserve implication. Consider '(~x ) a ⌃1(G2)-
formula. There is a ⌃1-formula '0(~x ) := 9~y . (~x ,~y ), with  a bounded formula, such
that G ` ' $ '0. From Proposition 6.3.1, we know that G `  (~x ,~y )$ � (~x ,~y ) = 1. So,

26Namely, G2 ` Pr⇠ (pA(
•
~x )q)_ Pr⇠ (pB(

•
~x )q)! Pr⇠ (pA(

•
~x )_B(

•
~x )q).
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by assumption, G2 ` � (~x ,~y ) = 1 ! Pr⇠ (p� (
•
~x ,

•
~y ) = 1q); using the derivability condi-

tions, we can thus conclude G2 `  (~x ,~y )! Pr⇠ (p (
•
~x ,

•
~y )q). Hence27, G2 ` 9~y . (~x ,~y )!

Pr⇠ (p9~y . (
•
~x ,~y )q). a

Having the previous proposition in mind, we might just study condition B; in fact, we
are going to study a slight variation of it, namely

G2 ` f (~x ) = n! Pr⇠ (pf (
•
~x ) = nq),

with f a function-symbol in a suitable class and n 2 N. We proceed our aim with a simple
proposition.

Proposition 6.6.2. Suppose that ⇠ is such that G2 ` 8Term(x).8Term(y).x  y ! ⇠(x
•
 y).

Then, G2 ` 8x.8y.x  y! Pr⇠ (p
•
x  •

yq).

Proof. Similar to the proof of Proposition 6.5.1. a

Throughout the rest of this section, we are going to assume that ⇠ is a numeration of
a theory T satisfying the conditions of the previous result.

Definition 6.6.1. We define the class FuncFin of function-symbols of G2 by recursion:

Basis Case: S,+,min,max,⇡k

j
2 FuncFin.

Finite Composition: If f ,g0, . . . , gk 2 FuncFin and28, for each n 2 N, there are ~mi,j 2 N,
with 1  i  `, such that29

G2 ` COMP[f ;g0, . . . , gk](~x ) = n$
_̀

i=1

0
BBBBBB@

k̂

j=0

gj (~x ) = ~mi,j

1
CCCCCCA ,

then COMP[f ;g0, . . . , gk] 2 FuncFin.

Finite Bounded Recursion: If f is defined by bounded recursion from t0, t1,

t2 2 FuncFin and, for each n 2 N, there are g0, . . . , gk 2 FuncFin already defined and
~mi 2 N, with 1  i  `, such that

BR[t0, t1; t2](x) = n$
k_

i=0

gi(x) = ~mi ;

then BR[t0, t1; t2] 2 FuncFin.

Theorem 6.6.1 (Form of Internal Completeness for FuncFin). For each n 2 N, if f 2 FuncFin,
then G2 ` f (~x ) = n! Pr⇠ (pf (

•
~x ) = nq).

27This follows from the following fact: from G2 ` �(~x )! 9~x .�(~x ), we can conclude G2 ` Pr⇠ (p�(
•
~x )!

9~x .�(~x )q), and so G2 ` Pr⇠ (p�(
•
~x )q)! Pr⇠ (p9~x .�(~x )q), hence G2 ` 9~x .Pr⇠ (p�(

•
~x )q)! Pr⇠ (p9~x .�(~x )q).

28We call this other condition finiteness.
29If ` = 0 we assume

W
`

i=1�i :=?.
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Proof. Let us prove by induction on Definition 6.6.1.

Basis case: S: If n = 0, then G2 ` S(x) = 0 !?, and so G2 ` S(x) = 0 ! Pr⇠ (pS(
•
x) = nq).

Assume n > 0. Then, either G2 ` n = 2k +1 or G2 ` n = 2(k +1). Firstly, let us
assume G2 ` n = 2k +1. Then, G2 ` S(x) = n! S(x) = 2k +1, and so G2 ` S(x) =
n! S(x) = 2k +1, thus G2 ` S(x) = n! S(x) = S(2k). Therefore, G2 ` S(x) = n!
x = 2k, and using Proposition 6.5.1, G2 ` S(x) = n! Pr⇠ (p

•
x = 2kq). This implies

that G2 ` S(x) = n! Pr⇠ (pS(
•
x) = 2k + 1q), and so G2 ` S(x) = n! Pr⇠ (pS(

•
x) =

2k +1q), consequently G2 ` S(x) = n! Pr⇠ (pS(
•
x) = nq).

Now let us assume G2 ` n = 2(k +1). Then, G2 ` S(x) = n ! S(x) = 2(k +1),
and so G2 ` S(x) = n ! x = 2(k +1) •� 1. Hence, G2 ` S(x) = n ! x = 2k +1;
again using Proposition 6.5.1, G2 ` S(x) = n! Pr⇠ (p

•
x = 2k +1q). Consequently,

G2 ` S(x) = n! Pr⇠ (pS(
•
x) = S(2k +1)q), thus G2 ` S(x) = n! Pr⇠ (pS(

•
x) = nq).

+: If n = 0, then G2 ` x + y = 0! x = 0^ y = 0; using Proposition 6.5.1 this yields
G2 ` x + y = 0! Pr⇠ (p

•
x = 0^ •

y = 0q), so G2 ` x + y = 0! Pr⇠ (p
•
x +

•
y = 0q). Let

us now assume n > 0. It is not hard to prove that

G2 ` x + y = n$
n_

i=0

(x = i ^ y = n� i). (I)

So, from Proposition 6.5.1, G2 ` x + y = n!W
n

i=0 Pr⇠ (p
•
x = i ^ •

y = n� iq), and
so30 G2 ` x + y = n! Pr⇠ (p

W
n

i=0(
•
x = i ^ •

y = n� i)q), consequently, again from
(I), G2 ` x + y = n! Pr⇠ (p

•
x +

•
y = nq).

min: It is not hard to see that G2 ` min(x,y) = n$ (x = n^ x  y)_ (y = n^ y  x).
The result follows from Propositions 6.5.1 and 6.6.2.

max: Similar to the previous case.

Finite Composition: Assume, by induction hypothesis, that the result holds for function-
symbols f ,g0, . . . , gk 2 FuncFin and that these function-symbols satisfy the condition
of finiteness of Definition 6.6.1. Then, there are ~mi,j 2 N, with 1  i  `, such that

G2 ` COMP[f ;g0, . . . , gk](~x ) = n$
_̀

i=1

0
BBBBBB@

k̂

j=0

gj (~x ) = ~mi,j

1
CCCCCCA . (II)

So, we get by induction hypothesis that G2 ` COMP[f ;g0, . . . , gk](~x ) = n!
W
`

i=1 Pr⇠ (p
V

k

j=0 gj (
•
~x ) = ~mi,j q). From a property previously used, we conclude

G2 ` COMP[f ;g0, . . . , gk](~x ) = n! Pr⇠ (p
_̀

i=1

(
k̂

j=0

gj (
•
~x ) = ~mi,j )q).

From (II) we obtain the desired property.

30This follows from the fact that G2 ` Pr⇠ (p'(
•
~x )q)_ Pr⇠ (p (

•
~x )q)! Pr⇠ (p'(

•
~x )_ (

•
~x )q).
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Finite Bounded Recursion: Assume, by induction hypothesis, that the result holds for
t0, t1, t2 2 FuncFin and that these function-symbols satisfy the conditions of finite-
ness of Definition 6.6.1. Then, for n 2 N, there are g0, . . . , gk 2 FuncFin already
defined and ~mi 2 N, with 1  i  `, such that

BR[t0, t1; t2](x) = n$
k_

i=0

gi(x) = ~mi . (III)

Using a previously made reasoning and (III), we obtain the desired result.

a
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7
Conclusions and Future Work

The main topic of this thesis was the study of notions of provability, videlicet formulas
B(x,y) that satisfy T ` ' () 9n 2 N.T ` B(p'q,n). The following are examples of stud-
ied illustrious notions of provability: the usual notion of provability (PrT ), k-provability
(T `k steps ·), and s-symbols provability (T `s symbols ·). We presented general results con-
cerning notions of provability—see, for example, Theorems 4.3.1 and 5.7.1—and we
studied particular notions of provability.

In Chapter 2, we presented new relations between the First Incompleteness Theorem
(G1), Undefinability of Truth, and recursion. Our approach is general enough for one to
get the “big picture”, but specific enough for one not to get lost with too much general-
ity—in that chatper, we are always in the realm of (first-order) theories of arithmetic. We
related G1 with Rice’s Theorem (a major theorem in recursion) by developing a version of
Kleene’s Normal Form with formulas and provability; we studied the interplay between
G1 and the non-recursiveness of truth via recursion; and we presented a general arith-
metical form of the Diagonalization Lemma that is responsible for several major results,
scilicet G1 the Undefinability of Truth, and Hilbert-Bernays Paradox.

We studied the decidability of k-provability in PA in Chapter 3—the relation ‘being
provable in PA with at most k steps’—and the decidability of the proof-skeleton prob-
lem—the problem of deciding if a given formula has a proof that has a given skeleton
(the list of axioms and rules that were used). The decidability of k-provability for the
usual Hilbert-style formalization of PA is still an open problem, but it is known that the
proof-skeleton problem is undecidable for that theory. Using new methods, we presented
a characterization of some numbers k for which k-provability is decidable, and we pre-
sented a characterization of some proof-skeletons for which one can decide whether a
formula has a proof whose skeleton is the considered one. These characterizations are
natural and parameterized by unification algorithms.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

In Chapter 4, we studied Kreisel’s Conjecture: if, for all n 2 N, PA `k steps '(n), then
PA ` 8x.'(x). For a theory of arithmetic T , given a recursive function h, T `h ' holds
if there is a proof of ' in T whose code is at most h(#') (this notion depends on the
underlying coding). We created P

h

T
(x) a predicate for `h in T . We showed that there is

a sentence ' and a total recursive function h such that T `h PrT (pPrT (p'q)! 'q), but
T ��`h ', where PrT stands for the standard provability predicate in T . This statement
is related to a conjecture by Montagna. We also studied variants and weakenings of
Kreisel’s Conjecture. By the use of reflection principles, we obtained a theory T

h

� that
extends T such that a version of Kreisel’s conjecture holds: given a recursive function h

and '(x) a �-formula (where � is an arbitrarily fixed class of formulas) such that, for all
n 2 N, T `h '(n), then T

h

� ` 8x.'(x). Several derivability conditions were studied for a
theory to satisfy the following implication: if T ` 8x.Ph

T
(p'( •x)q), then T ` 8x.'(x). This

corresponds to an arithmetization of Kreisel’s conjecture. It was shown that, for certain
theories, there is a function h such that `k steps ✓ `h.

We studied Numeral forms of completeness and consistency for S12 and other weak
theories, like EA, in Chapter 5. This gave rise to: an exploration of the derivability
conditions needed to establish the mentioned results; a presentation of a weak form of
Gödel’s Second Incompleteness Theorem without using ‘provability implies provable
provability’; a provability predicate that satisfies the mentioned derivability condition
for weak theories; and a completeness result via consistency statements. Moreover, the
Chapter 5 includes characterizations of the provability predicates for which the numeral
results hold, having EA as the surrounding theory, and results on functions that compute
finitist consistency statements. We ended Chapter 5 by drawing some philosophical
implications of our results.

Chapter 6 was devoted to the study of the derivability condition ‘provability implies
provable provability’, namely Pr⇠ (x)! Pr⇠ (pPr⇠ (

•
x)q). As we mentioned, this condition

is very sensitive to the underlying theory, for example it is an open problem if it holds
for I�0. We created a weak theory G2 to study this condition; this is a theory for the class
FLINSPACE. We also relate properties of G2 to equality between computational classes.

There are several future lines of investigation having our thesis as a starting point:

• Express other results of recursion theory in the framework of Chapter 2;

• Extend the methods developed in Chapter 3 to a more general framework, by allow-
ing a di↵erent type of algorithms;

• Explore the modal logic of Ph
T
from Chapter 4;

• Find further consequences of Numeral Completeness from Chapter 5;

• Use the methods of Chapter 6 to further study the derivability condition ‘provability
implies provable provability’.
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