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Abstract

The use of diagonalization reasonings is transversal to the Mathematical practise. Since

Cantor, diagonalization reasonings are used in a great variety of areas that vanish from

Topology to Logic. The objective of the present thesis was to study the formal aspects

of diagonalization in Logic and more generally in the Mathematical practise. The main

goal was to find a formal theory that is behind important diagonalization phenomena in

Mathematics.

We started by the study of diagonalization in theories of Arithmetic: Diagonalization

Lemma and self-reference. In particular, we argued that important properties related to

self-reference are not decidable, and we argued that the diagonalization of formulas is

substantially different from the diagonalization of terms, more precisely, the Diagonal

Lemma cannot prove the Strong Diagonal Lemma.

We studied in detail Yablo’s Paradox. By presenting a minimal theory to express

Yablo’s Paradox, we argued that Yablo’s Paradox is not a paradox about Arithmetic. From

that theory and with the help of some notions of Temporal Logic, we claimed that Yablo’s

Paradox is self-referential.

After that, we studied several paradoxes — the Liar, Russell’s Paradox, and Curry’s

Paradox— and Löb’s Theorem, and we presented a common origin to those paradoxes and

theorem: Curry System. Curry Systems were studied in detail and a consistency result for

specific conditions was offered. Finally, we presented a general theory of diagonalization,

we exemplified the formal use of the theory, and we studied some results of Mathematics

using that general theory.

All the work that we present on this thesis is original. The fourth chapter gave rise to

a paper by the author ([SK17]) and the third chapter will also give rise in a short period

of time to a paper. Regarding the other chapters, the author, together with his Advisors,

is also preparing a paper.

Keywords: Diagonalization, General Theory of Diagonalization, Self-Reference, Diago-

nalization Lemma, Strong Diagonalization Lemma, Paradox, Yablo’s Paradox, Liar, Rus-

sell’s Paradox, Curry’s Paradox, Löb’s Theorem, Knaster-Tarski Theorem, Fixed Point

Lemma for Normal Functions, Banach Fixed Point Theorem
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Resumo

O uso da diagonalização é transversal à prática Matemática. Desde Cantor, os raciocínios

por diagonalização são usados numa grande variedade de áreas que vão desde a Topologia

à Lógica. A finalidade desta tese foi o estudo dos aspectos formais da diagonalização na

Lógica e, de forma mais geral, na prática Matemática. O principal objectivo foi encontrar

uma teoria formal que seja responsável por fenómenos importantes de diagonalização.

Começámos por estudar a diagonalização em teorias de Aritmética: Lema Diagonal

e auto-referência. Em particular, argumentámos que propriedades importantes relacio-

nadas com a auto-referência não são decidíveis e argumentámos que a diagonalização

de fórmulas é substancialmente diferente da diagonalização de termos, de forma mais

precisa, o Lema Diagonal não prova o Lema Diagonal Forte.

Estudámos em detalhe o Paradoxo de Yablo. Apresentando uma teoria minimal para

expressar o Paradoxo de Yablo, avançámos que o Paradoxo de Yablo não é um paradoxo

sobre Aritmética. Partindo dessa teoria e recorrendo a noções de Lógica Temporal, afir-

mámos que o Paradoxo de Yablo é auto-referente.

Depois disso, estudámos vários paradoxos — o Mentiroso, Paradoxo de Russell, e o

Paradoxo de Curry — e o Teorema de Löb, e apresentámos uma origem comum para estes

paradoxos e teorema: Sistemas de Curry. Os Sistemas de Curry foram estudados em deta-

lhe e foi apresentado um resultado de consistência para condições específicas. Finalmente,

apresentámos uma teoria geral da diagonalização, exemplificámos o uso formal da teoria,

e estudámos vários resultados Matemáticos usando a teoria geral.

Todo o trabalho apresentado na presente tese é original. O quarto capítulo deu origem

a um artigo pelo autor da tese ([SK17]) e o terceiro capítulo irá, também, dar origem a

um artigo num curto intervalo de tempo. Em relação aos restantes capítulos, o autor,

em conjunto com os seus Orientadores, também está a preparar um artigo com o seu

conteúdo.

Palavras-chave: Diagonalização, Teoria Geral da Diagonalização, Auto-Referência, Lema

Diagonal, Lema Diagonal Forte, Paradoxo, Paradoxo de Yablo, Mentiroso, Paradoxo de

Russell, Paradoxo de Curry, Teorema de Löb, Teorema de Knaster-Tarski, Lema do Ponto

Fixo para Funções Normais, Teorema de Banach Tarski
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Preliminaries

As the main subject of the current thesis is Mathematical Logic, we will assume that

the main definitions and results of Logic are known (the definition of formula, the con-

nectives, first-order theories, etc); for more information in introductory notions of Logic

see: [Sho18], [Bar93], [Rau06], and [Ebb+96]. We will also assume the main definitions

and results on Category Theory, a domain where we will use the right-to-left notation

(in the rest we will use the usual function notation): af will denote, in the context of

categories, the composition of f with a (see [Lan13] for more informations).

We continue the preliminaries by remembering the main notions needed to study

theories of Arithmetic. Following the notation of [Rau06], let Fn denote the set of all

n-ary functions with arguments and values in N and let F :=
⋃
n∈NFn. For f ∈ Fm and

g1, . . . , gm ∈ Fn, we call h : ~a 7→ f (g1(~a), . . . , gm(~a)) the (generalised) composition of f and gi
and write h = f [g1, . . . , gm]. The set of primitive recursive functions is the minimal set of

function on N such that:

Initial the constant function equal to 0, the successor function S, and the projection

functions Inν : ~a 7→ aν (1 ≤ ν ≤ n, n ∈ N) are primitive recursive;

Oc If h ∈ Fm and g1, . . . , gm ∈ Fn are primitive recursive, then f = h[g1, . . . , gm] is primitive

recursive;

Op If g ∈ Fn and h ∈ Fn+2 are primitive recursive, then so is f ∈ Fn+1 uniquely determined

by the equations

f (~a,0) = g(~a); f (~a,S(b)) = h(~a,b, f (~a,b)).

The set of recursive functions is the minimal set of function on N that includes the primi-

tive recursive functions and obeys:
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CHAPTER 0. PRELIMINARIES

Oµ If g ∈ Fn+1 is recursive and is such that ∀~a.∃b.g(~a,b) = 0, then f given by f (~a) =

µb[g(~a,b) = 0] is also recursive, where the right-hand side denotes the smallest b

such that g(~a,b) = 0.

A predicate P ⊆ Nn is called primitive recursive (respectively, recursive) if the characteris-
tic function χP of P defined by

χP (~a) =

 1 in case P (~a)

0 in case ¬P (~a)

is primitive recursive (respectively, recursive). It is a well-known fact the the predicates |
(divides) and prim (being a prime number) are primitive recursive ([Rau06, p. 171,172]).

We will assume as given the basic facts and definitions about primitive recursive functions

and about recursive functions (for example, their relation to computable functions). For

more details see [Rau06, p. 165–175] or [Smi13, p. 83–98]. We remember the following

primitive recursive functions ([Rau06]):

Prime Numeration The unique function given by

p0 := 2; pn+1 := µq 6 pn! + 1[prim(q)∧ q > pn] .

Sequence Code We define the sequence code of 〈a0, . . . , an〉 as being

(a0, . . . , an) := pa0+1
0 · · ·pan+1

n =
∏
i6n

pai+1
i

(we will commonly interchange between the notations (a0, . . . , an) and 〈a0, . . . , an〉). It

is clear that if (a0, . . . , an) = (b0, . . . , bm), then m = n and, for all 0 ≤ i ≤ n, ai = bi . We

define the primitive recursive predicate Seq by

Seq(a) := a , 0∧∀p ≤ a.∀q ≤ p.(prim(p)∧prim(q)∧ p|a→ q|a).

Length Function We define the function a 7→ ln(a) by:

ln(a) := µk 6 a [pk 6 | a] .

It is clear that ln(1) = 0 and if a = (a0, . . . , an), then ln(a) = n+ 1.

Component-Recognition Function The function (a, i) 7→ (a)i is defined by:

(a)i := µk 6 a
[
pk+2
i 6 | a

]
.

The intuitive meaning of the previous definition is clear. We also set (a)last =

(a)ln(a) •−1, where •− is as defined in [Rau06, p. 219].

Arithmetic Concatenation We define the function ? by

a ? b := a ·
∏
i<ln(b)

p
(b)i+1
ln(a)+i

if Seq(a) and Seq(b), and a ? b := 0 otherwise.

2



We recall here that Q is the first-order theory of Arithmetic (with a constant 0, with a

unary function-symbol S, with two binary function-symbols + and ×, see [Smi13, p. 30])

with the following axioms ([Smi13, p. 55,56]):

Axiom 1 ∀x. 0 , S(x);

Axiom 2 ∀x.∀y. (S(x) = S(y)→ x = y);

Axiom 3 ∀x. (x , 0→∃y. x = S(y));

Axiom 4 ∀x. x+ 0 = x;

Axiom 5 ∀x.∀y. x+ S(y) = S(x+ y);

Axiom 6 ∀x. x × 0 = 0;

Axiom 7 ∀x.∀y. x × S(y) = (x × y) + x.

PA ([Smi13, p. 72]) is the first-order theory with the same language as Q, with the same

axioms of Q with the exception of Axiom 3 (because it turns out that this axiom can

be proved from the others in PA), and every sentence that is the universal closure of an

instance of

Induction Schema ϕ(0)∧ (∀x. (ϕ(x)→ ϕ(S(x))))→∀x. ϕ(x),

where ϕ(x) vanish over all formulas of the language of Arithmetic. Given a natural num-

ber n we use the common notation n to denote the numeral n in a theory of Arithmetic,

i.e., to denote Sn(0).

Following [Smi13, p. 99–103], we introduce some important notions about captur-

ing functions in a theory of Arithmetic. The one-place function f is captured as a func-
tion by ϕ(x,y) in a theory of Arithmetic T just if, for any m,n ∈ N, if f (m) = n, then

`T ∀y.(ϕ(m,y) ↔ y = n). Furthermore, the one-place function f is fully captured as a

function by ϕ(x,y) just if `T ∀x.∃!y.ϕ(x,y) and for any m,n ∈ N,

(i) If f (m) = n, then `T ϕ(m,n);

(ii) If f (m) , n, then `T ¬ϕ(m,n).

We say that a theory of Arithmetic T is primitive recursive adequate (respectively, strongly

primitive recursive adequate) if, for every primitive recursive function f , there is a corre-

sponding formula ϕ in T that captures it as a function (respectively, fully captures it as

a function). It is a well-known fact that Q is primitive recursive adequate and that PA is

strongly primitive recursive adequate ([Smi13, p. 116]). This means that Q can capture

every primitive recursive relation (and PA fully capture). This means that if R ⊆ N is a

primitive recursive relation, then there is a formula ϕ such that for all m1, . . . ,mn ∈ N,

R(m1, . . . ,mn) holds if, and only if, `PA ϕ(m1, . . . ,mn); and R(m1, . . . ,mn) does not hold if,

and only if, `PA ¬ϕ(m1, . . . ,mn) (see [Lin17, p. 8]).

3



CHAPTER 0. PRELIMINARIES

In the remaining of the preliminaries, we are going to consider a fixed first-order

theory T that is a consistent primitively recursive axiomatised extension of PA (see [Smi13,

p. 148]). Now we move to code string of symbols ξ into natural number #ξ. We fix the

following:

s = ¬ ∧ ∀ ( ) 0 S + × v0 v1 · · ·
#s 1 3 5 7 9 11 13 15 17 19 21 23 · · ·

Given a string of symbols ξ = s0 · · ·sn, its Gödel number, #ξ, is given by:

#ξ := (#s0, . . . ,#sn) = p1+#s0
0 · · ·p1+#sn

n .

It is clear that given strings of symbols ξ and η, then

#(ξη) = #ξ ? #η.

Given a string of symbols ξ, we denote #ξ simply by pξq. In particular, if ϕ is a formula,

pϕq denotes #ϕ. Let us consider the primitive recursive functions num(n) defined by:

num(0) := #0; num(x+ 1) := #S ? num(n).

We have that num is fully captured by a function-symbol num. One can easily construct

(see [Bar93, p. 837]) a primitive recursive function sub such that if ϕ(vi) is a formula

where vi is free, r(vi) is a term where vi is free, and t is a term, then

sub(#ϕ(vi), i,#t) = #ϕ(t); sub(#r(vi), i,#t) = #r(t).

Using sub, one can define the following primitive recursive functions:

s′(x,y) :=

sub(x, i,y) if i = µj < x
[
vj occurs free in x

]
x if i does not exist.

and

s(x,y) := s′(x,num(y)).

As s and s′ are a primitive recursive functions and T is an extension of PA, then s can

be fully captured by a function-symbol s and s′ by a function-symbol s′. We usually

abbreviate ([Bar93, p. 837]) s(pϕ(x)q, y) by pϕ(
•

y)q, if ϕ(x) is a formula, and s(pt(x)q, y)

by pt(
•

y)q, if t(x) is a term. Thus, if x is the only free-variable of the formula ϕ(x), if x

is the only free-variable of the term r(x), and if t is a closed-term denoting n ∈ N, then

`T s(pϕ(x)q, t) = pψq, where `T ψ↔ ϕ(n) and `T s(pr(x)q, t) = pjq, where `T j = r(n).

Let us consider the following primitive recursive predicates in N (see [Bar93, p. 836–

837] or [Rau06, p. 231–234]):

Being the Gödel Number of a Term We define the predicate T erm by: T erm(n) holds if,

and only if, n is the Gödel number of a term.

4



Being the Gödel Number of a Formula We will consider the predicate Form defined by:

Form(n) is true if, and only if, n is the Gödel number of a formula.

Being the Gödel Number of an Axiom of T We define the predicateAxiom by: Axiom(n)

holds if, and only if, n is the Gödel number of an axiom.

As T is primitively recursive axiomatised extension of PA, there are formulas in T — Term,

Form, and Axiom — that capture the previous predicates in N. We define the primitive

recursive functions ∼¬,
∼
∧, ∼→ as follows:

∼¬a := #¬ ? a; a
∼
∧ b := #(?a ? #∧ ?b ? #); a

∼→ b := ∼¬(a
∼
∧ ∼¬b).

In the previous definition the parenthesis are occurring both as a syntactic symbol

and as a symbol in the meta-language. Following [Rau06, p. 229], let us consider the

primitive recursive relations proofT and bewT in N given, respectively, by:

proofT(b) := Seq(b)∧ b , 1∧

∀k < ln(b). (Axiom((b)k)∨∃i, j < k. (b)i = (b)j
∼→ (b)k)

and by:

bewT(b,a) := proofT(b)∧ a = (b)last .

The intuitive meaning of bewT(b,a) is straightforward: b is the Gödel number of a proof

(that is a sequence of inferences) of a. We have that there is a formula bewT in T that

captures bewT. Let us now define the provability predicate in T, PT, by:

PT(x) := ∃y. bewT(y,x).

We have that the Hilbert-Bernays-Löb derivability conditions hold ([Smi13, p. 223]), i.e.,

given formulas ϕ and ψ:

C1.) If `T ϕ, then `T PT(pϕq) (the other implication does not necessarily hold);

C2.) `T PT(pϕ→ ψq)→ (PT(pϕq)→PT(pψq));

C3.) `T PT(pϕq)→PT(pPT(pϕq)q).

We now move to construct a very important sentence in T following [Smi13, p. 130–

139]. Let us consider the primitive recursive function diag defined by:

diag(n) = #(∃y(y =) ? num(n) ? #∧ ?n ? #).

Given a formula ϕ, diag(#ϕ) is #(∃y(y = pϕq ∧ ϕ)). Let GdlT(m,n) be the primitive

recursive relation given by

GdlT(m,n) := bewT(m,diag(n)).

5
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Let us consider GdlT(x,y) as being a formula that captures GdlT (see [Smi13, p. 139]). Let

us, furthermore, consider

UT(y) := ∀x. ¬GdlT(x,y),

and the Gödel sentence (in T)

GT := ∃y. (y = pUT(y)q∧UT(y)).

It is clear that `T GT↔ UT(pUT(y)q), and thus `T GT↔ ∀x. ¬GdlT(x,pUT(y)q). It is easy

to see ([Smi13, p. 139,169]) that

`T GT↔¬PT(pGTq).

We end the preliminaries by proving that `T PT(pϕ∧ψq)↔PT(pϕq)∧PT(pψq), a fact

that is going to be useful:

1 ϕ ∧ψ→ ϕ Logic

2 ϕ ∧ψ→ ψ Logic

3 PT(pϕ ∧ψ→ ϕq) C1.) (1)

4 PT(pϕ ∧ψ→ ψq) C1.) (2)

5 PT(pϕ ∧ψ→ ϕq)→ (PT(pϕ ∧ψq)→PT(pϕq)) C2.)

6 PT(pϕ ∧ψ→ ψq)→ (PT(pϕ ∧ψq)→PT(pψq)) C2.)

7 PT(pϕ ∧ψq)→PT(pϕq) (3,5)

8 PT(pϕ ∧ψq)→PT(pψq) (4,6)

9 PT(pϕ ∧ψq)→PT(pϕq)∧PT(pψq) (7,8)

10 ϕ→ (ψ→ ϕ ∧ψ) Logic

11 PT(pϕ→ (ψ→ ϕ ∧ψ)q) C1.) (10)

12 PT(pϕ→ (ψ→ ϕ ∧ψ)q)→ (PT(pϕq)→PT(pψ→ ϕ ∧ψq)) C2.)

13 PT(pϕq)→PT(pψ→ ϕ ∧ψq) (11,12)

14 PT(pψ→ ϕ ∧ψq)→ (PT(pψq)→PT(pϕ ∧ψq)) C2.)

15 PT(pϕq)∧PT(pψq)→PT(pϕ ∧ψq) Logic (13,14)

16 PT(pϕ ∧ψq)↔PT(pϕq)∧PT(pψq) (9,15)

6
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Introduction

In the context of Mathematics, diagonalization is a very broad term that is linked to

several phenomena that vanish from paradoxes to fixed point theorems. Nevertheless,

although diagonalization is used to refer to a great variety of phenomena, there is a

transversal idea to the use of the term: given a relation R(x0, . . . ,xn), it is used to refer to the

possibility ofR(a, . . . , a) being the case for a given element a. It is now immediate how fixed

point theorems are a case of diagonalization: given a function f , to say that f has a fixed

point is equivalent to say that the relation R(x,y) defined by f (x) = y is diagonalisable

(has a fixed point). The aim of the present thesis is to study diagonalization in formal

systems of Mathematics from self-reference, that is a particular case of diagonalization,

to diagonalization in everyday Mathematics.

Before any further discussion on the subject, let us understand the term diagonaliza-

tion. If one follows a strict way of thinking, diagonalization, in a rough way, refers to

the possibility of drawing diagonal lines. This claim is not far from the connotation that

we are going to use. If one consider the plot of the function f (x) = x where the image

of the function is represented in the y-axis, one gets a perfect diagonal line. This line

corresponds to the very simple fact that y = x. So, keeping in mind this naïve view of

diagonalization as being y = x, if one has a relation R(x,y), it make sense that the diago-

nalization of that relation is simply the operation of replacing the occurrence of y by an

x, i.e., R(x,x). As we are generalising fixed point theorems, when speaking about diago-

nalization of a relation R(x0, . . . ,xn), rather than making a universal claims, we make an

existential: there is an a such that R(a, . . . , a) is the case. It is now clear the Mathematical

use of the term. For a compilation of important fixed point theorems we recommend

[Sha16].

There are two very famous diagonalization arguments due to Cantor ([Mos06, p. 10–

15]). We start by stating and proving the first result.

7



CHAPTER 1. INTRODUCTION

Theorem 1.0.1. The set of infinite binary sequences ∆ = {〈a0, a1, . . . ,〉|∀i. ai = 0∨ ai = 1} is
uncountable.

Proof . Following [Mos06, p. 10], let us suppose, aiming a contradiction, that there is an

enumeration ∆ = {α0,α1, . . .} where, for each n ∈ N, αn = 〈an0, a
n
1, . . .〉 is a sequence of 0’s and

1’s. Let us now define a new sequence β by:

β(n) := 1− ann.

We have that β ∈ ∆ and β(n) = 1 − ann , ann. Thus, for each n ∈ N, β , αn, which is a

contradiction.

�

The proof of the previous result used a diagonalization of amn that corresponds to ann.

More schematically, the proof considered the following diagonal line:

Figure 1.1: Cantor’s argument from [Mos06, p. 11].

Now we present and prove the second result due to Cantor according to [Mos06, p. 14].

Theorem 1.0.2. For every set A, A�℘(A).

Proof . That A ≤ ℘(A) is the case, follows from the fact that the function x 7→ {x} is

injective.

To complete the proof, let us suppose, aiming a contradiction, that there is a surjective

function π : A → ℘(A). Let us consider the set B = {x ∈ A|x < π(x)}. So, for all x ∈ A,

x ∈ B↔ x < π(x). As B ∈℘(A) and as π is surjective, then there is b ∈ A such that π(b) = B.

But then we get b ∈ B↔ b < B, which is a contradiction.

�

In the previous argument there was also a diagonalization: there was a diagonalization

of the relation x ∈ π(y). There is a deep relation between the previous proof and Russell’s

Paradox, a paradox that will be studied in Chapter 4. More examples of diagonalization

in Mathematics are going to be studied in Chapter 6.

The use of the term diagonalization is not confined to everyday Mathematics: it is also

used in Logic and in Philosophy. As we will see in the present thesis, not only important

8



results of Mathematics are statements about the diagonalization of a relation, but also

deep results in Logic are a consequence of this phenomenon. In the context of Logic,

diagonalization can have the meaning that we have presented so far, but can also have an

adapted version: given a theory T and a formula ϕ(x0, . . . ,xn), speaking about the diago-

nalization of ϕ(x0, . . . ,xn) is the same as speaking about the possibility of `T ∃x. ϕ(x, . . . ,x)

being the case. A very famous result in Logic that arises from diagonalization is the Di-

agonalization Lemma that will be studied in detail in Chapter 2. One textbook example

of a sentence that arises from the use of a diagonalization is the sentence GT that was

constructed in Chapter 0. From GT and the fact that `T GT↔¬PT(pGTq) one can prove

one of the most stunning results in Logic, Gödel’s First Incompleteness Theorem.

Gödel’s First Incompleteness Theorem (adapted from [Bar93]). If T is a consistent prim-
itively recursive axiomatised extension of Q, then there is a sentence ϕ such that:

1.) �̀Tϕ;

2.) If `T PT(pϕq) =⇒`T ϕ, then �̀T¬ϕ.

Proof . We will prove that the sentence GT satisfies the desired properties. We have that

`T GT↔¬PT(pGTq). (I)

If `T GT, then `T PT(pGTq) and, by (I), `T ¬PT(pGTq). Thus, if `T GT, then `T⊥, which is a

contradiction. So, �̀Tϕ.

Let us suppose that `T PT(pGTq) =⇒ `T GT. If, `T ¬GT, then by (I) we conclude that

`T PT(pGTq), and by hypothesis follows that `T GT; thus, `T⊥, which is a contradiction.

�

The antecedent condition of 2.) corresponds to the ω-consistency which was assumed

by Gödel in his original paper. For more informations on the previous result see: [Rau06],

[Smi13], and [Bar93]. We present, without further observations, the definition of ω-

consistency ([Smi13, p. 143]): an arithmetical theory T is ω-inconsistent if, for some

formula ϕ(x), `T ϕ(n) holds for all n ∈ N and `T ¬∀x. ϕ(x); T is ω-consistent if it is not

ω-inconsistent.

There is a very important logical notion that is connected to the notion of diago-

nalization — self-reference. Self-reference, in logic, refers to the possibility of a given

formula speak about itself. Two examples of famous self-referential sentences are the Liar

([Bea+16]), a paradox that is going to be studied in Chapter 4, and Gödel’s sentence. The

former can be identified with the phrase in natural language “I am false” and with the for-

mal sentence L↔¬L or, in the presence of a truth predicate, with the sentence L↔¬T (L),

where T (·) denotes the truth predicate. The latter, is the sentence presented in Chapter 0

that satisfies `PA G↔¬PPA(pGq). Intuitively, in the natural language, Gödel’s sentence

expresses “I am not provable in PA”. It is important to observe that in the first example

9



CHAPTER 1. INTRODUCTION

we arrive at a contradiction and in the second example we do not arrive at a contradiction.

This means that self-reference can lead to contradictions or simply to unexpected results.

It is clear that in the two previous examples the considered sentences somehow ex-

press some non-trivial information about themselves. This property of expressing some-

thing about themselves goes beyond the logical aspect of the considered sentences. To

see this, just think about the formula S↔ S. This formula is trivially true and can have

any construction, not necessarily a self-referential one. So, it expresses something that

we recognise as being trivial, hence it has no non-trivial information about itself. Being

in the presence of diagonalization does not guaranty that one is also in the presence of

self-reference — for the latter we need the intension of the formula to speak about itself

and we need some construction.

This means that self-reference is a property that is hard (or even impossible) to define

or study logically and that is characterised by its use and not by a closed definition. As,

for the presented reasons, we are considering self-reference as a property that obeys to

the previous conditions, we cannot study self-reference using only syntactical means,

nevertheless we can recognise indispensable properties that a formula should have to

be considered self-referential. Inspired by the previous analysis, we identified two main

features that a self-referential formula should have:

1.) A logical layout (or interpretation) of the form X0↔ F(X0), where F(X) is a formula

that depends on the parameter X that, by its turn, is a formula;

2.) Non-trivial information about itself.

It is important to observe that whenever one can find a formulation of a sentence in

the previous conditions that very sentence should be considered self-referential. This

does not mean that every formulation of the sentence is self-referential. To see this, the

following formulation of the Liar1 is not self-referential (it does not satisfy the first feature

of self-reference), nevertheless the former formulation of the Liar is self-referential:

L1.) “L2.) is false”;

L2.) “L1.) is true”.

So, to argue that some sentence is self-referential one needs to find a self-referential

formulation of it, but one does not need to show that every formulation of it is self-

referential (this last feature probably will never be the case).

The main goal of the current work is to study diagonalization in formal systems with

a view towards everyday Mathematics. We will start by studying the Diagonalization

Lemma in Chapter 2. After that, in Chapter 3, we will argue that Yablo’s Paradox is self-

referential. From that, a detailed study of paradoxes and Löb’s Theorem will be done in

1Some readers might not subscribe to the thesis that this two line paradox is the Liar. Nevertheless, this
formulation was presented just to give an example; we are not going to need it for what follows.
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Chapter 4. Chapter 5 will serve to present a general theory of diagonalization, a theory

that will be used in Chapter 6 to trace several important results in Mathematics to a

common origin: the General Diagonalization Theorem.

All the work that we present on this thesis is original. The fourth chapter gave rise to

a paper by the author [SK17] and the third chapter will also give rise in a short period of

time to a paper. Regarding the other chapters, the author, together with his Advisors, is

also preparing a paper.
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Two uses of the Diagonalization Lemma

In this chapter, we will use the Diagonalization Lemma for two purposes: to present

natural properties related to self-reference that are not decidable, and to argue that one

cannot prove the Strong Diagonalization Lemma using the Diagonalization Lemma, i.e.,

that diagonalization of term is substantially different from diagonalization of formulas.

The Diagonalization Lemma ([Rau06, p. 250]) is a very famous result in Logic that

is, since its birth, deeply linked to Gödel’s First Incompleteness Theorem (see [Raa18]

for further information). This result states that, fixed a theory T that must be a primi-

tively recursive axiomatised extension of Q, given a one-free-variable-formula ϕ(x), one

can always construct a sentence ψ such that `T ψ ↔ ϕ(pψq). The name of the result is

straightforward from the previous equivalence: it states that one can always diagonalize

a one-free-variable-formula of T. The sentences that arise from the use of the Diagonal-

ization Lemma are commonly accepted to be self-referential (the sentence ψ that emerges

from the use of the Diagonal Lemma applied to ϕ(x) and that satisfies `T ψ↔ ϕ(pψq) is

commonly accepted to be a sentence that by its very construction expresses, in an intuitive

way, “I have the property ϕ(x)”). One very natural question in this context is whether

one can define formally what self-reference is and whether there are natural properties

related to self-reference that are not decidable.

The Strong Diagonalization Lemma, also known as Jeroslow’s Lemma ([Jer73], [Smi13,

p. 237]), claims that, for a theory T that is a primitively recursive axiomatised extension

of PA and that has a function-symbol for each primitive recursive function, and for each

one-free-variable-formula ϕ(x), there is a closed-term t such that `T t = pϕ(t)q.

It is clear that from the Strong Diagonalization Lemma one can conclude the Diag-

onalization Lemma: one considers ψ as being ϕ(t) (where t is the closed-term from the

Strong Diagonalization Lemma) and one has the following:
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CHAPTER 2. TWO USES OF THE DIAGONALIZATION LEMMA

1 `T t = pϕ(t)q Strong Diagonalization Lemma

2 `T ψ↔ ϕ(t) definition of ψ

3 `T ψ↔ ϕ(pϕ(t)q) (1)

4 `T ψ↔ ϕ(pψq) definition of ψ

The Strong Diagonalization Lemma and the Diagonalization Lemma are really similar

in the layout (while one states one equality the other states an equivalence). As was ob-

served before, from the Strong Diagonalization Lemma one can prove the Diagonalization

Lemma, that is, reasonings about equivalence of formulas can be captured by reasonings

about equality of terms. One very natural question is whether the converse also holds,

i.e., can reasonings about equality of terms be captured by reasonings about equivalence

of formulas? More generally, is diagonalization of terms substantially different from

diagonalization of formulas?

In what follows, we are going to consider T as being a fixed first-order theory that is a

consistent primitively recursive axiomatised extension of PA that has a function-symbol

to capture each primitive recursive function. In particular we are going to consider

a binary function-symbol ∗ that captures the usual concatenation function ? (see the

Preliminaries, [Rau06, p. 224], or [Smi13, p. 132]), an unary function-symbol
•
¬ that

captures the primitive recursive function ∼¬ (see the Perliminaries, [Rau06, p. 229], or

[Smi13, p. 177]) defined by ∼¬(a) := (#¬) ? a. Given a formula ϕ, one has that `T p¬ϕq =

•
¬pϕq. We say that a predicate (formula) ϕ(x) is decidable in T ([Und]) if, for every n ∈ N,

`T ϕ(n) or `T ¬ϕ(n).

2.1 Formal Limitations to Decide Predicates Related to

Self-Reference

The aim of this section is to argue that important natural properties related to self-

reference are not decidable in the theory T. We start by presenting a some-how expected

result: not all forms of diagonalization in T are provable, more precisely, there is no way

to decide in T if, given a two-free-variable-formula ϕ(x,y), ∃x. ϕ(x,x) holds in T or not.

Theorem 2.1.1. Assume that T is ω-consistent. Then, there is a two-free-variable-formula
ϕ(x,y) such that ∃x. ϕ(x,x) is independent of T, i.e., �̀T∃x. ϕ(x,x) and �̀T¬∃x. ϕ(x,x).

Proof . Let us consider ϕ(x,y) as being x = pGTq∧PT(y). If `T ∃x. ϕ(x,x) was the case,

then `T PT (pGTq), which is a contradiction. Hence, �̀T∃x. ϕ(x,x). Let us suppose aiming

a contradiction that `T ¬∃x. ϕ(x,x). Thus, `T ∀x. ¬ϕ(x,x), consequently

`T ∀x. ¬(x = pGTq)∨¬PT(x). In particular, `T ¬(pGTq = pGTq)∨¬PT(pGTq). As `T pGTq =

pGTq it follows that `T ¬PT(pGTq), thus `T GT, which is a contradiction. So, �̀T¬∃x. ϕ(x,x).

�
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2.1. FORMAL LIMITATIONS TO DECIDE PREDICATES RELATED TO

SELF-REFERENCE

From the previous result we conclude that the problem of diagonalization in general

is not decidable in T. Nevertheless, we can construct very interesting diagonalizations

inside T, such as the Diagonalization Lemma.

Diagonalization Lemma ([Rau06, p. 250]). For every one-free-variable-formula ϕ(x) there
is a sentence ψ such that

`T ψ↔ ϕ(pψq).

Proof . Let f : N→ N be the function such that for every one-free-variable-formula θ(x),

f (#θ(x)) := #θ(pθ(x)q),

and if n is not the code of a one-free-variable-formula, then f (n) := 0. It is clear that f is

primitive recursive, so there is a predicate Diag(x,y) such that

`T ∀y. (Diag(pθ(x)q, y)↔ y = f (#θ(x))). (I)

Let β(z) be the formula ∀y. (Diag(z,y)→ ϕ(y)). Given a one-free-variable-formula θ(x)

we have that

1 `T β(pθ(x)q)↔∀y. (y = f (#θ(x))→ ϕ(y)) (I) and definition of β(z)

2 `T β(pθ(x)q)↔ ϕ(f (#θ(x))) (1)

3 `T β(pθ(x)q)↔ ϕ(pθ(pθ(x)q)q) definition of f

In particular, taking θ(x) as being β(z), if follows that

`T β(pβ(z)q)↔ ϕ(pβ(pβ(z)q)q).

The conclusion follows by taking ψ as being β(pβ(z)q).

�

We say that ψ results from the use of the Diagonalization Lemma if ψ is β(pβ(z)q)

for some one-free-variable-formula ϕ(x) (according to the notations introduced in the

previous proof). The sentences that arise by the Diagonalization Lemma are commonly

accepted to be self-referential. They are so not only because they satisfy `T ψ↔ ϕ(pψq),

but also by their very construction (using β(z)). It is important to observe that we are

considering in the set-up of the Diagonalization Lemma the sentence ψ as being self-

referential and not the equivalence ψ ↔ ϕ(pψq). Being in the presence of a sentence

that satisfies the equivalence does not necessarily mean that one is in presence of a self-

referential sentence — it is important to have some construction where the intension

of the sentence speak about itself is placed, just like the construction of β(pβ(z)q) (for

further reading on this see [HV14] and [Pic18]).

There is a version of the Diagonalization Lemma for a two-free-variable-formula that

we are not going to prove because the proof is really similar to the one of the Diagonal-

ization Lemma.
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Two-Variable Diagonalization Lemma ([AM99, p. 208]). For every two-free-variable-for-
mula α(x,y) there is a one-free-variable-formula ϕ(x) such that

`T ∀z. ϕ(z)↔ α(pϕ(x)q, z).

Now we move to establish some relations between the Diagonalization Lemma and

self-reference. For that, we introduce the following notion:

Definition 2.1.1. We say that a one-free-variable formula α(x) is a general formula if,

for every sentence ψ that results from the application of the Diagonalization Lemma,

`T α(pψq) holds.

It is clear that Sent(x) and Form(x) are general formulas (where Sent(x) is the predicate

that captures the sentences of T, and Form(x) is the predicate that captures formulas of

T). If one defines δ(x) as being the predicate that identifies the sentences that arise by

the use of the Diagonalization Lemma (this clearly can be captured by1 T), then δ(x)

is a general formula. More importantly, if σ (x) is a predicate that identifies all self-

referential formulas (see [Pic18] for a possible definition), as all sentences that arise from

the Diagonalization Lemma are self-referential, it follows that σ (x) is a general formula.

In fact, by what was previously said, if there is such a predicate σ (x), then one should

have `T ∀x. δ(x)→ σ (x).

One question that immediately emerges is if all instances of self-referential sentences

in T are an instance of the Diagonalization Lemma. We will not address this question

because, for what we want to argue, we simply need the fact that all sentences that arise

from the Diagonalization Lemma are self-referential, and we do not need the converse.

We will assume that self-reference can be defined in T by a predicate σ (x) and we will

argue that some natural properties about self-reference — for example σ (x)∧PT(x), i.e.,

being self-referent and provable — cannot be totally understood inside T in the sense

that they are not decidable using T. More precisely, the next result claims, in particular,

that T cannot decide all self-referential sentences that are: provable in T, or provable

false in T, or even not provable in T or provably false in T. The previous properties

are clearly natural properties about self-referential formulas (keep in mind that a great

deal about the discussion about self-reference emerged from Gödel’s Incompleteness

Theorems, more precisely from the Diagonalization Lemma). The key-aspect of this

section is that a proof is given: one might have the intuition that some natural properties

related to self-reference, just like provability, might be definable in a theory of Arithmetic

but not decidable, but a proof or some kind of argument is needed to sustain such a claim,

otherwise is just a supposition.

Inspired by Gödel’s Incompleteness Theorems, one might think that the independence

phenomenon of the mentioned predicates is coming directly from the fact that the prov-

ability predicate is being used, but that is a misleading way of thinking. To illustrate

1δ(x) := ∃u. (Form(u)∧∃v. v = p∀y(Diag(z,y)→q∗s′(u,pyq)∗p)q∧x = p∀y(q∗pDiag(
•

v,y)q∗p→q∗s′(u,pyq)∗
p)q) satisfies the desired property.
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SELF-REFERENCE

this, one should remember that starting from independent formulas, one can construct

decidable formulas using connectives: GT is independent, but one has that `T ¬(GT∧ ⊥)

and `T GT ∨>. Furthermore, although Gödel’s Second Incompleteness Theorem holds

in T, the theory T is able to prove the arithmetization of that result ([Boo84, p. 61]):

`T ¬PT(⊥)→ ¬PT(¬PT(⊥)). This confirms that one has no a priori reason to think that

the use of the provability predicate together with other predicates leads to independence

results in every situation. In fact, it is the general formula property that will play a major

role in the proof. We now present the independence result.

Theorem 2.1.2. Let α(x) be a general formula. Then the following predicates are not decidable
in T:

1.) α(x)∧¬PT(x);

2.) ¬α(x)∨¬PT(x);

3.) α(x)∧PT(
•
¬x);

4.) α(x)∧ (¬PT(x)∨PT(
•
¬x));

5.) ¬α(x)∨PT(x);

6.) α(x)∧PT(x);

7.) ¬α(x)∨¬PT(
•
¬x);

8.) ¬α(x)∨ (PT(x)∧¬PT(
•
¬x)).

Proof . By the proof of Gödel’s Second Incompleteness Theorem from [Bar93, p. 828] we

know that `T GT ↔ ¬PT (p⊥q); thus ¬PT (p⊥q) is independent of T. It suffices to prove

that the predicates 1.) up to 4.) are not decidable, because the predicates 5.) up to 8.) are

the negations of the previous predicates. Let α(x) be a general formula. We are going to

construct independent sentences for the predicates 1.) up to 4.).

1.) Let ψ1 be the sentence that arises from the application of the Diagonalization Lemma

to α(x)∧¬PT(x). Then,

`T ψ1↔ α(pψ1q)∧¬PT(pψ1q). (I)

Let us see that ψ1 is independent of T. We have that if `T ψ1, then

1 `T ψ1 (Hyp.)

2 `T α(pψ1q)∧¬PT(pψ1q) (I)

3 `T ¬PT(pψ1q) (2)

4 `T PT(pψ1q) (1)

5 `T⊥ (3,4)
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which goes against consistency; and if `T ¬ψ1, then

1 `T ¬ψ1 (Hyp.)

2 `T ¬α(pψ1q)∨PT(pψ1q) (I)

3 `T α(pψ1q) α(x) is a general formula

4 `T PT(pψ1q) (2,3)

5 `T PT(p¬ψ1q) (1)

6 `T PT(pψ1 ∧¬ψ1q) (4,5)

7 `T PT(p⊥q) (6)

which contradicts the proof of Gödel’s Second Incompleteness Theorem. Thus, ψ1 is

independent of T, and so α(x)∧¬PT(x) is not decidable.

2.) Let ψ2 be the sentence that arises from the application of the Diagonalization Lemma

to ¬α(x)∨¬PT(x). Then,

`T ψ2↔¬α(pψ2q)∨¬PT(pψ2q). (II)

Let us prove that ψ2 is independent of T. We have that if `T ψ2, then

1 `T ψ2 (Hyp.)

2 `T ¬α(pψ2q)∨¬PT(pψ2q) (II)

3 `T α(pψ2q) α(x) is a general formula

4 `T ¬PT(pψ2q) (2,3)

5 `T PT(pψ2q) (1)

6 `T⊥ (4,5)

which goes against consistency, and if `T ¬ψ2, then

1 `T ¬ψ2 (Hyp.)

2 `T α(pψ2q)∧PT(pψ2q) (II)

3 `T PT(pψ2q) (2)

4 `T PT(p¬ψ2q) (1)

5 `T PT(pψ2 ∧¬ψ2q) (3,4)

6 `T PT(p⊥q) (5)
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which contradicts the proof of Gödel’s Second Incompleteness Theorem. Thus, ψ2 is

independent of T, and so ¬α(x)∨¬PT(x) is not decidable.

3.) Let ψ3 be the sentence that arises from the application of the Diagonalization Lemma

to α(x)∧PT(
•
¬x). Then,

`T ψ3↔ α(pψ3q)∧PT(p¬ψ3q). (III)

Let us prove that ψ3 is independent of T. We have that if `T ψ3, then

1 `T ψ3 (Hyp.)

2 `T α(pψ3q)∧PT(p¬ψ3q) (III)

3 `T PT(p¬ψ3q) (2)

4 `T PT(pψ3q) (1)

5 `T PT(pψ3 ∧¬ψ3q) (3,4)

6 `T PT(p⊥q) (5)

which goes against the proof of Gödel’s Second Incompleteness Theorem; and if

`T ¬ψ3, then

1 `T ¬ψ3 (Hyp.)

2 `T ¬α(pψ3q)∨¬PT(p¬ψ3q) (III)

3 `T α(pψ3q) α(x) is a general formula

4 `T ¬PT(p¬ψ3q) (2,3)

5 `T PT(p¬ψ3q) (1)

6 `T⊥ (4,5)

which goes against consistency. Thus, ψ3 is independent of T, and so α(x)∧PT(
•
¬x) is

not decidable.

4.) Let ψ4 be the sentence that arises from the application of the Diagonalization Lemma

to α(x)∧ (¬PT(x)∨PT (
•
¬x)). Then,

`T ψ4↔ α(pψ4q)∧ (¬PT(pψ4q)∨PT (p¬ψ4q)). (IV)

Let us prove that ψ4 is independent of T. We have that if `T ψ4, then
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1 `T ψ4 (Hyp.)

2 `T α(pψ4q)∧ (¬PT(pψ4q)∨PT(p¬ψ4q)) (IV)

3 `T ¬PT(pψ4q)∨PT(p¬ψ4q) (2)

4 `T PT(pψ4q) (1)

5 `T PT(p¬ψ4q) (3,4)

6 `T PT(pψ4 ∧¬ψ4q) (4,5)

7 `T PT(p⊥q) (6)

which contradicts the proof of Gödel’s Second Incompleteness Theorem; and if `T ¬ψ4,

then

1 `T ¬ψ4 (Hyp.)

2 `T ¬α(pψ4q)∨ (PT(pψ4q)∧¬PT(p¬ψ4q)) (IV)

3 `T α(pψ4q) α(x) is a general formula

4 `T PT(pψ4q)∧¬PT(p¬ψ4q) (2,3)

5 `T PT(pψ4q) (4)

6 `T PT(p¬ψ4q) (1)

7 `T PT(pψ4 ∧¬ψ4q) (5,6)

8 `T PT(p⊥q) (7)

which goes against the proof of Gödel’s Second Incompleteness Theorem. Thus, ψ4 is

independent of T, and so α(x)∧ (¬PT(x)∨PT(
•
¬x)) is not decidable.

�

From the previous result we conclude, in particular, that T is not expressible enough

to identify self-referential sentences satisfying very natural properties, namely: being

provable in T (this corresponds to 6.) in the theorem), being provably false in T (this

corresponds to 3.) in the theorem), and not provable in T or provably false in T (this

corresponds to 4.) in the theorem). This means that T is not expressible enough to decide

some natural properties related to self-reference. As we observed, provability plays a role

in the proof but not the major role — the major role is played by the general formulas.

To confirm that, one could expect that the predicate in 6.) — the predicate α(x)∧PT(x)

— was not decidable because it comes directly from a conjunction with the provability

predicate, but one has no a priori reason to think that the predicate presented in 2.) — that

is equivalent to PT(x)→¬α(x) — was not decidable.
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One immediate consequence of the previous result is the following version of Gödel’s

First Incompleteness Theorem ([Rau06, p. 251]).

Corollary 2.1.1. If Sent(x) is the predicate that identifies the sentences of T, then the predicate
Sent(x)∧¬PT(x) is not decidable.

Proof . Follows from 1.) of the previous theorem having in mind that Sent(x) is a general

formula.

�

2.2 The Diagonalization Lemma and the Strong

Diagonalization Lemma: A Separation Result

We start by presenting the Strong Diagonalization Lemma and a proof of it.

Strong Diagonalization Lemma ([Jer73], [Smi13, p. 237]). For every one-free-variable-
formula ϕ(x) there is a closed-term t such that

`T t = pϕ(t)q.

Proof . Let d : N → N be the function such that for every one-free-variable-function-

symbol f,

d(#f) := #ϕ(f(pfq)),

and if n is not the code of a one-free-variable-function-symbol, then d(n) := 0. It is clear

that d is primitive recursive, so it is captured by some function-symbol d in T. Hence,

given a one-free-variable-function-symbol f,

`T d(pfq) = d(#f) = pϕ(f(pfq))q.

In particular, as d is a one-free-variable-function-symbol, we have that

`T d(pdq) = pϕ(d(pdq))q.

The conclusion follows by taking t as being the closed-term d(pdq).

�

Now we prove that the Diagonalization Lemma does not prove itself: in the sense that

instances of `T ψ ↔ ϕ(pψq) cannot be captured by a single two-free-variable-formula

α(x,y) and by applying the Diagonalization Lemma to the one-free-variable-formula

α(pϕ(x)q,x).

Theorem 2.2.1. There is no two-free-variable-formula α(x,y) such that, given a one-free-
variable-formula ϕ(x), if ψ is the sentence obtained from the Diagonalization Lemma applied
to α(pϕ(x)q,x), then

`T ψ↔ ϕ(pψq).
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Proof . Suppose, aiming a contradiction, that α(x,y) is in the previous conditions. Take

ϕ(x) as being the formula obtained from the Two-Variable Diagonalization Lemma ap-

plied to ¬α(x,y). Then,

`T ∀x. ϕ(x)↔¬α(pϕ(x)q,x),

hence

`T ∀x. ¬ϕ(x)↔ α(pϕ(x)q,x). (I)

Let ψ be the sentence obtained from the Diagonalization Lemma applied to α(pϕ(x)q,x).

Thus,

`T ψ↔ α(pϕ(x)q,pψq). (II)

As by hypothesis we have

`T ψ↔ ϕ(pψq), (III)

then

1 `T ψ↔ α(pϕ(x)q,pψq) (II)

2 `T ψ↔ ϕ(pψq) (III)

3 `T ¬ψ↔¬ϕ(pψq) (2)

4 `T ¬ϕ(pψq)↔ α(pϕ(x)q,pψq) (I)

5 `T ¬ψ↔ α(pϕ(x)q,pψq) (3,4)

6 `T ψ↔¬ψ (1,5)

7 `T⊥ (6)

which is a contradiction.

�

The previous result is interesting by its-own because it shows that the Diagonalization

Lemma is not powerful enough to prove instances of `T ψ ↔ ϕ(pψq). As was already

observed, one can use the Strong Diagonalization Lemma to derive the Diagonalization

Lemma. In an intuitive way, the closed-term from the Strong Diagonalization Lemma

is used to construct the sentence ψ as being ϕ(t). One very natural question is if from

the sentence ψ from the Diagonalization Lemma one can construct the closed-term t

as being pψq to prove the Strong Diagonalization Lemma; that is, whether one can use

the Diagonalization Lemma to prove the Strong Diagonalization Lemma. The following

corollary answers negatively to the question.

Corollary 2.2.1. There is no two-free-variable-formula α(x,y) such that, given a one-free-
variable-formula ϕ(x), if ψ is the sentence obtained from the Diagonalization Lemma applied
to α(pϕ(x)q,x), then there is a term t such that ψ is ϕ(t) and

`T t = pϕ(t)q.
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Proof . Suppose, aiming the absurd, that α(x,y) is in the previous conditions. Let ϕ(x) be

any one-free-variable-formula, and ψ be the sentence obtained from the Diagonalization

Lemma applied to α(pϕ(x)q,x). Then, there is a term t such thatψ isϕ(t) and `T t = pϕ(t)q.

We have that

1 `T ψ↔ ϕ(t) (Hyp.)

2 `T t = pϕ(t)q (Hyp.)

3 `T ψ↔ ϕ(pϕ(t)q) (1,2)

4 `T ψ↔ ϕ(pψq) (Hyp.) and (3)

Thus, α(x,y) is such that, given a one-free-variable-formula ϕ(x), if ψ is the sentence

obtained from the Diagonalization Lemma applied to α(pϕ(x)q,x), then `T ψ↔ ϕ(pψq);

which is a contradiction by the previous theorem.

�

Although from the outside we can see that pψq is the closed-term used in the Strong

Diagonalization Lemma — that is an arithmetical statement about the equality of two

terms — , the Diagonalization Lemma — that is a logical statement about an equivalence

of arithmetical formulas — is not expressible enough to do it. Hence, diagonalization

of term is substantially different from diagonalization of formulas. This is not totally

unexpected fact: since Gödel we know that the Logicism program ([Ten17]) of reducing

Arithmetic to Logic cannot be totally fulfilled. With the previous result we have made ex-

plicite one distinction of reasoning with terms (Arithmetic) and reasoning with formulas

(Logic).
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3
Yablo’s Paradox and Self-Reference

Yablo in [Yab93] presented a paradox that, according to him, should not depend on

self-reference. Yablo’s Paradox arises by considering, for each n ∈ N, Sn as being the

sentence “For all k > n, Sk is not true”. That is, for each n ∈ N, we consider

Sn↔ (∀k > n. ¬Sk). (Y)

Let us now see its paradoxical nature1. For that, we are firstly going to prove that

∀n ∈ N. ¬Sn. (I)

Let us consider n ∈ N. Let us suppose, aiming a contradiction, that Sn is the case. So,

by (Y), ∀k > n. ¬Sk holds. In particular, we have that ¬Sn+1. Hence, once again by

(Y), ∃k > n + 1. Sk is the case. Take m ∈ N in such conditions. So, Sm holds. But as

m > n+ 1 > n, we conclude, by what was previously seen, that ¬Sm is also the case, which

is a contradiction. This proves (I).

Let us continue our derivation of a contradiction. By (I), we have that ¬S0 is the case.

So, ∃k > 0. Sk holds. Let us consider ` > 0 in such conditions. Then, S` is the case. But, by

(I), we also have that ¬S` holds, which is a contradiction. This concludes the derivation

of a contradiction in the context of Yablo’s Paradox.

Several authors have studied Yablo’s Paradox in the realm of Arithmetic (especially in

PA or similar systems) to discuss its self-referential nature (see [Pri97], [Pic13], [Ket04],

and [Coo14]). In what follows, we are going to show that Yablo’s Paradox does not depend

1One could argue a priori that the paradox arises simply by the fact that the sentences are ill-defined: we
need sentences not yet defined to define a particular one like an inverted version of an inductive definition.
This problem can be solved by formalising the paradox in Arithmetic and using a general form of the
Diagonalization Lemma as exposed in [Pic13]. We will not follow this line of argument because not only
we believe that definability is not in the heart of the paradox (since it can be formalised in Arithmetic), but
also because we want to step-way from Arithmetic. As we will argue, Yablo’s Paradox does not depend on
Arithmetic.
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on Arithmetic by presenting a minimal theory to express it; hence no arithmetical fact

is needed to study Yablo’s Paradox. From that conclusion, we will argue towards its

self-referential nature by interpreting it in Linear Temporal Logic.

3.1 A Minimal Theory to Express Yablo’s Paradox

It is clear that the order relation is needed to express Yablo’s Paradox. A careful

analysis of the derivation of a contradiction that we presented gives the impression that

the order relation plays a major role in the derivation and that no arithmetical facts are

needed to express Yablo’s Paradox. In what follows, we will confirm that impression by

expressing Yablo’s Paradox in a minimal theory that only deals with a formal version of

the relation < and that does not require any Arithmetic.

The theory that we are going to present is very similar to the “scheme (B)” of [Ket04]

and to the “theory Y” of [HZ17]. The main differences from those two references are

mainly the analysis that we are going to make and the conclusion that we are going to

draw: we will present a complete formal proof using natural deduction and show that

the theory is minimal in a sense yet to explain, and from that we are going to argue that

Temporal Logic is the suitable framework to discuss Yablo’s Paradox. We agree with the

view presented in [HZ17] that Yablo’s Paradox does not need the Diagonalization Lemma

to be studied. Nevertheless, we go further than what was analysed in the “theory Y”: in

[HZ17] was needed a form of coding (an assignment of constants to formulas) and in our

analysis we are not going to use any form of coding, another confirmation that we are not

going to need Arithmetic.

We define, as follows, the suitable theory to be considered.

Definition 3.1.1. We define the First-Order Theory Tas being the theory that has a binary

relation symbol < and the following axioms:

(AxT1) ∀x.∀y.∀z. x < y ∧ y < z→ x < z;

(AxT2) ∀x.∃y. x < y.

The axiom (AxT1) expresses the transitivity of the relation < and the axiom (AxT2)

expresses, in an intuitive way, the infinitude of the relation — the actual infinitude would

also require (AxT3) ∀x.¬x < x. We decided not to include (AxT3) in the theory Tbecause

it is not necessary to express the paradox, but in this context one should conceive this

axiom as something very desirable. From (AxT1) , it is (AxT2) that fixes the interpretation

of the relation (otherwise, in the presence of axiom (AxT3), < could be interpreted as being

>N). Moreover, we have that 〈N,<N〉 is a model2 of T. Hence, T is consistent.

Now we move to include a formal version of (Y) in the theory T.

2We use the notation <N to distinguish the syntactical symbol from the semantical one.
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Definition 3.1.2. We define the First-Order Theory Yas being the theory Twith a new

unary relation symbol S and the axiom:

∀x. (S(x)↔ (∀k > x. ¬S(k))). (AxY)

It is clear that (AxY) formalises (Y) in the theory T. Now we prove the formal version

of Yablo’s Paradox, i.e., we prove that theory Y is inconsistent. The proof that we are

going to present is a formal version of the derivation presented previously.

Theorem 3.1.1. The theory Y is inconsistent.

Proof . Let us consider, for each term t of Y, the derivation D′t as being

S(t)
(AxY)∀k > t. ¬S(k) x0 > t

¬S(x0)
(AxY)¬∀k > x0. ¬S(k)

∃k > x0. S(k)

and the derivation D′′t as being

x1 > x0 ∧ S(x1)

S(x1)

S(t)
(AxY)∀k > t. ¬S(k)

x0 > t

x1 > x0 ∧ S(x1)

x1 > x0
(AxT1)

x1 > t

¬S(x1)

⊥

We have the following deduction (let us call it Dt)

(AxT2)
∀x.∃y. x < y

∀E∃y. t < y

[S(t)]1 [x0 > t]
2

D′t
∃k > x0. S(k)

[x1 > x0 ∧ S(x1)]3 [S(t)]1 [x0 > t]
2

D′′t
⊥
∃E3⊥

∃E2⊥
¬I1¬S(t)

Let us consider a fixed term t0 of Y. Then, we finally have

Dt0

¬S(t0)
(AxY)¬∀k > t0. ¬S(k)

∃k > t0. S(k)

[x3 > t0 ∧ S(x3)]4

S(x3)

Dx3

¬S(x3)

⊥
∃E4⊥

�
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The deduction Dt corresponds to a formal version of the proof of (I), which confirms

that theory Y is totally suitable to formalise the paradox. Not only theory Y expresses

Yablo’s Paradox, but it is also a minimal theory in such conditions (in the sense that if one

of the axioms is removed we no longer have inconsistency), as the following result shows.

Theorem 3.1.2. The theories Y− (AxT1), Y− (AxT2), and Y− (AxY) are consistent.

Proof . It is clear that 〈N,<N〉 is a model of Y− (AxY) (here the predicate S(x) can be

interpreted in any way). Firstly, let us prove that Y− (AxT1) is consistent. Let us consider

S= {0,1,2} and <S= {〈0,0〉,〈0,1〉,〈1,0〉,〈1,2〉,〈2,1〉,〈2,2〉}. Let us take S(x) as being x = 1.

Let us see that M0 = 〈S,<S,x = 1〉 is a model of Y− (AxT1).

It is clear that M0 does not satisfy (AxT1) (for instance 0 <S 1 and 1 <S 2, but it is not

the case that 0 <S 2). It is straightforward that for each x ∈ S there is an y ∈ S such that

x <S y. So, (AxT2) is satisfied in M0. Now, let us see that (AxY) is satisfied in M0. Let us

firstly suppose that x = 1. We have that 1 <S 1 is not the case. So, if k >S 1, then k , 1.

Hence, if k >S x, then k , 1. Let us now suppose that for each k ∈ S, if k >S x, then k , 1.

So, for all k ∈ S, if k = 1, then k >S x is not the case. This property does not hold for x = 0

and x = 2 because 1 >S 0 and 1 >S 2, but it holds for x = 1. So, we conclude that x = 1. In

all, x = 1 if, and only if, for each k ∈ S, if k >S x, then k , 1. Therefore, (AxY) holds in M0.

In sum, M0 is a model of Y− (AxT1).

Finally, let us prove that Y− (AxT2) is consistent. Let us see that M1 = 〈N,>N,x = 0〉 is

a model of Y− (AxT2). It is clear that (AxT2) does not hold in M1 and it is also clear that

(AxT1) holds in M1. Let us see that (AxY) holds in M1. Let us firstly suppose that x = 0.

Then, it is clear that for all k <N x, k , 0 is the case. Now, let us suppose that for all k <N x,

k , 0 holds. Let us also suppose, aiming a contradiction, that x , 0. So, 0 <N x, which is a

contradiction because 0 = 0. So, x = 0. In all, x = 0 if, and only if, for all k <N x, k , 0 is

the case. Therefore, (AxY) holds in M1. In sum, M1 is a model of Y− (AxT2).

�

In sum, Yablo’s Paradox can be formalised in the (minimal) theory Y that does not

depend on any arithmetical facts and that formalises some properties of 〈N,<N〉. Hence,

Yablo’s Paradox depends only in some conditions that the relation < satisfies (transitivity

and infinitude), and not on any arithmetical property.

3.2 Linear Time Temporal Logic and Yablo’s Paradox

Inspired in the minimal theory Yand by the fact that Yablo’s Paradox does not need

Arithmetic to be stated, we are going to establish a connection between Temporal Logic

and Yablo’s Paradox in order to argue towards its self-referential nature.

Temporal Logic, as the name suggests, is a branch of Logic that aims to study the

logical aspects of time and its relation with other logical properties. The most common

approach to formalise time is to consider an instant-based model approach to the flow of
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time. In this context, the flow of time is captured by a set of instants and binary relation

of precedence on it, i.e., a pair 〈T ,≺〉 (see [GG15] for further details). It is now clear how

a relation can be establish between what was concluded using theory Y and Temporal

Logic — the former defines a precedence relation that can be interpreted as being the

flow of time by the latter.

As Yablo’s Paradox was stated for 〈N,<N〉, in what follows we are going to consider the

Linear Temporal Logic (LTL)3 that is a temporal propositional logic interpreted in 〈N,<N〉
having temporal operators X, G, and F with the following meanings ([GG15]):

X : “In the next moment it will be the case that...”

G : “It will always be the case that...”

F : “It will at some time be the case that...”

We consider that F is the dual of G in the sense that, for each formula ϕ, F(ϕ) can

be interpreted as being ¬G(¬ϕ), and vice-versa. As usual, we drop in every formula

unnecessary parenthesis, for example, we write simply Gϕ instead of G(ϕ). The temporal

operatorsX,G, and F are called nexttime, always, and sometime, respectively. The formulas

Xϕ, Gϕ, and Fϕ are usually read “next ϕ”, “allways ϕ”, and “sometime ϕ” [KM08,

pg. 20].

Let us fix, in the remaining section, V a set of propositional variables. The following

definition fixes the meaning of the temporal operators.

Definition 3.2.1. [KM08, pg. 21] A temporal (or Kripke) structure for V is an infinite

sequence K = 〈ηi〉i∈N, where for each i ∈ N, ηi : V → {0,1}. For each K and i ∈ N we define

Ki(ϕ), where ϕ is a LTL formula, inductively by:

1.) For each v ∈ V , Ki(v) = ηi(v);

2.) Ki(⊥) = 0;

3.) Ki(ϕ→ ψ) = 1 if, and only if, Ki(ϕ) = 0 or Ki(ψ) = 1;

4.) Ki(Xϕ) = Ki+1(ϕ);

5.) Ki(Gϕ) = 1 if, and only if, for every j ≥ i, Kj(ϕ) = 1;

6.) Ki(Fϕ) = 1 if, and only if, there is j ≥ i such that Kj(ϕ) = 1.

For the other logical connectives (∧, ∨,↔, and ¬), Ki(ϕ) is defined in the usual proposi-

tional way.

It is important to observe that in LTL the future includes the present. Now we define

validity in LTL.

3A more general Temporal Logic could be considered here, but we decided to study the paradox in LTL
because LTL is one of the most well-known Temporal Logics, and as the paradox was stated for 〈N,<N〉 the
formulation in LTL is much clear.
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Definition 3.2.2. [KM08, pg. 22] A formula ϕ is called valid in the temporal structure K
(or K satisfies ϕ), denoted by |=K ϕ if, for every i ∈ N, Ki(ϕ) = 1. ϕ is called a consequence
of a set Fof formulas, denoted by F |= ϕ, if for every K , |=K ϕ holds whenever |=K ψ is

the case for all ψ ∈F. ϕ is valid, |= ϕ, if ∅ |= ϕ.

We define, as follows, the concept of logically equivalent formulas.

Definition 3.2.3. [KM08, pg. 23] Two formulas ϕ and ψ are called logically equivalent,
ϕ � ψ, if the formula ϕ↔ ψ is valid.

It is important to observe that LTL is an extension of Classical Propositional Logic.

From the definition of validity follows directly the following result.

Theorem 3.2.1. The formula (�0 · · ·�n ⊥) →⊥ is valid, where, for each i ∈ {0, . . . ,n}, �i ∈
{X,G,F}.

For what follows, the following valid formulas are relevant ([KM08]):

(V1) ¬Xϕ↔ X¬ϕ;

(V2) X(ϕ ∧ψ)↔ Xϕ ∧Xψ;

(V3) X(ϕ↔ ψ)↔ (Xϕ↔ Xψ);

(V4) Gϕ↔ ϕ ∧XGϕ;

(V5) ¬G¬ϕ↔ Fϕ.

The formulas (V1), (V2), and (V3) express some commutativity properties, the formula

(V5) expresses the meaning of F, and the formula (V4) expresses the inductive meaning

of the future: a formula is always the case if it is valid in the present and if in the next

moment it continues always being the case. There is an axiomatisation of LTL (see [KM08,

pg. 33,34]), but we are not going to use it directly; instead, as the previous formulas are

valid, we are going to use them to study Yablo’s Paradox in LTL.

We now state a very important substitution principle.

Principle of Substitution ([KM08, pg. 32]). For every formulas ϕ and ψ, if ϕ � ψ, then
Fϕ � Fψ and Xϕ � Xψ.

Now we move to interpret Yablo’s Paradox in LTL. The idea behind what we are

going to do is the following: we are going to consider the sentences S0,S1, . . . from Yablo’s

Paradox as a unique sentence whose truth value is changing in time, this means that we

are going to abstract from the particularities of Yablo’s Paradox and consider the sentences

S0,S1, . . . as a whole. More precisely, we are going to consider a formula S whose truth

value changes in time according to condition (Y) from before.
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Let us now derive the temporal formulation of Yablo’s Paradox. As we are considering

a sentence S that changes according to (Y), then we are considering each Si as being Ki(S)

(for every temporal structure K). Hence, we have the following:

Ki(S) = 1 ⇐⇒ ∀j > i. Kj(S) = 0,

that is,

Ki(S) = 1 ⇐⇒ ∀j ≥ i + 1. Kj(S) = 0.

The previous equivalence in LTL (quantified universally in the temporal structure K) is

the formula:

S↔ XG¬S. (TY)

So, Yablo’s Paradox in Temporal Logic is, intuitively, expressed by “This sentence is

true if in the next moment it is false in the future” or, if one does not consider that the

future includes the present, by “This sentence is true if it is false in the future”. One

can derive a contradiction in a very similar way as before by thinking (intuitively) about

the previous sentences in the natural language. The next result formalises that intuitive

approach of time in LTL — if one considers (TY) in LTL one can derive a contradiction,

i.e., LTL + (TY) is inconsistent.

Theorem 3.2.2. If the formula S↔ XG¬S is valid in LTL, then one can derive ⊥ in LTL.

Proof .

[S]1

(TY)
XG¬S

(V4), Princ. Sub.
X(¬S ∧XG¬S)

(V2)
X¬S ∧XXG¬S

(TY),Princ. Sub.
X¬S ∧XS

(V1)¬XS ∧XS
⊥
¬I1¬S

(TY)¬XG¬S
(V1)

X¬G¬S
(V5),Princ. Sub.

XFS
(TY),Princ. Sub.

XFXG¬S
(V4),(V3),Princ. Sub.

XFX(¬S ∧XG¬S)
(TY),(V3),Princ. Sub.

XFX(¬S ∧ S)
Princ. Sub.

XFX ⊥
Theo.3.2.1⊥

�
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If one translates each step of the previous proof to a formula with quantifiers using

Definition 3.2.1 one gets the proof of the inconsistency of theory Y (Theorem 3.1.1) or,

more intuitively, the original proof of a contradiction presented in Section 3.1. It is

important to keep in mind that the concept of time that we are using in LTL is a natural

one — it is just a new name for the properties of the relation <. This means that we are

not adding an unnatural concept to our formulation of Yablo’s Paradox, instead we are

simply giving a name to some properties of the considered relation.

Finally, having proved the paradoxical nature of (TY), we argue that the presented

formulation of Yablo’s Paradox is self-referential. It is clear that this formulation of Yablo’s

Paradox satisfies the first feature of self-reference presented in the beginning: it has the

logical form of feature 1.) from Chapter 1. Intuitively, one might directly be convinced

that feature 2.) from the Introduction is satisfied, nevertheless we present a justification.

The Liar is commonly accepted to be a self-referential sentence. Our formulation of

Yablo’s Paradox is more complex than the Liar, because not only the sentence speaks

about its very negation (like the Liar), but it also speaks about the future. Hence, if our

formulation was not self-referential, being the Liar simpler than it, it would follow that

the Liar is not self-referential. This means that feature 2.) is satisfied. In sum, (TY) is a

self-referential formulation of Yablo’s Paradox, i.e., Yablo’s Paradox is self-referential.
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4
Smullyan’s Theorem, Löb’s Theorem, and a

General Approach to Paradoxes

In this chapter, we are going to present a result by Smullyan that is behind several

important diagonalization phenomena, and we are going to present a general approach

to several paradoxes. The main ideas of this chapter are based on a paper by the author:

[SK17].

4.1 Smullyan’s Theorem

Smullyan in [Smu94] studied several forms of diagonalization, a book where he

showed that his Theorem R ([Smu94, p. 37]) is behind several important diagonalization

phenomena ([Smu94, p. 25–38]) such as: combinatory logic, Gödel’s First Incompleteness

Theorem, and the Recursion Theorem. We present, as follows, that result.

Theorem R ([Smu94, p. 37]). A sufficient condition for a relation R(x,y) on a set N to have
a fixed point is that there be a relation R′(x,y) on N and a function d :N →N such that:

(R1) There is a ∈N such that R′(d(a), a);

(R2) For each x,y ∈N , R′(x,y) implies R(x,d(y)).

Proof . Let us consider a ∈N as in (R1). We have that R′(d(a), a) so, by (R2), we conclude

that R(d(a),d(a)).

�

We are going to see that Theorem R not only is behind important results with diago-

nalization, but also that it is responsible for several paradoxes with diagonalization.
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APPROACH TO PARADOXES

4.2 The Paradoxes and Löb’s Theorem

We start by presenting the paradoxes that we are going to study and Löb’s Theorem.

The Liar Paradox is one of the most ancient paradoxes and certainly one of the most well

know. One of its oldest formulations is the Epimenides Paradox:

“One of their prophets has said, The men of Crete are ever false, evil beasts,

lovers of food, hating work.”

Titus 1:12

In a simpler form, the Epimenides Paradox can be identified with the sentence: ‘Epi-

menides, a Cretan, says that all Cretans are liars’. It is clear the relation between the

former sentence and the sentence: ‘This sentence is false’. This last sentence is currently

known as the Liar Paradox (or simply the Liar), see [Bea+16]. In a logical point of view,

this assertion has the following structure: X↔¬X, where X is exactly the sentence that

speaks about itself.

Russell’s Paradox is a paradox that is deeply related to the Liar. This paradox emerges

when the class Ru = {x|x < x} is considered to be a set. Under that assumption, by defi-

nition, we get Ru ∈ Ru↔ Ru < Ru. It is the later equivalence that is know as Russell’s

Paradox ([Mos06],[ID16]). The definition of the class Ru contains a form of diagonal-

ization — the relation ∈ (x,y) is diagonalized — and Russell’s Paradox emerges, by its

own, from a diagonalization — the formula x ∈ x↔ y < y is diagonalized. Consequently,

Russell’s Paradox has two diagonalizations.

Another very important paradox, that will serve as basis to comprehend the former

paradoxes, is Curry’s Paradox ([Bea13]). For a sentence ϕ, Curry’s Paradox is the sentence:

‘If this sentence is true, then ϕ’. Let us see, in a symbolic way where X denotes the

sentence that speaks about itself, its paradoxal structure:

X↔ (X→ ϕ)

X→ (X→ ϕ)
(C)

X→ ϕ X↔ (X→ ϕ)

X→ ϕ X

ϕ

where (C) denotes the use of the contraction rule. As we can derive any sentence ϕ, we

get a paradox.

Let us now analyse, briefly, Löb’s Theorem. Löb in [Löb55] answered the question

proposed by Henkin: ‘What can we conclude about a similar disposition to Gödel’s The-

orem without negation?’, i.e., ‘What can we conclude about a formula B in PA such that

B↔ PT(pBq)?’ ([Ver17]). The answer given by Löb is what is nowadays know as Löb’s

Theorem. Its original formulation (where it is considered the language PA and where ~B

denotes the provability predicate in PA) was:
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Löb’s Theorem (original) ([Löb55]). If G is any formula and ~B({G})→ G is a theorem, then
G is a theorem.

In its most recent formulation, Löb’s Theorem is:

Löb’s Theorem (adapted from [Bar93]). Suppose that T is a consistent recursive extension
of PA. Then, if ϕ is a sentence in T, we have

PT(pϕq)→ ϕ

ϕ

4.3 The Considered Languages and Diagonalization

In what follows, we are going to study Curry’s Paradox and its relation with Löb’s

Theorem and the Liar. For that, we are going to present a system that generalizes Curry’s

Paradox — the connection between the system and Curry’s Paradox is going to be straight-

forward because one of the purposes of the system is precisely to generalize the structure

of Curry’s Paradox.

As we want to study Löb’s Theorem and Russell’s Paradox, we need to allow some form

of Gödelization within the system. More precisely, we are going to consider a first-order

theory T such that for each formula, ϕ, we can consider its name, G[ϕ], as a closed-term

within the language1. We also want to consider an operator (an unary meta-predicate), �,

of formulas, ϕ, within the theory, �ϕ. We are going to work under the assumption that T

is given and, in some sense, T can be extended to the predicate �. The theory T enriched

with2 � will be denoted by T�.

We are going to presume that in T is defined a notion of truth or satisfiability of

formulas for formulas where � does not occur. In this chapter, we will denote by Var(T)

the collection of all the variables of T, by Term(T) the collection of all terms of T, by

CTerm(T) the collection of all closed terms in the considered theory, by Form(T) the

collection of all formulas of T, by Form1(T) the collection of all one-variable formulas of

T, and by Sent(T) the collection of all sentences of T (the same notations will be considered

for T�). Having been introduced these notations, it is important to observe that G and

� can be considered as functions, respectively, of types G : Form(T) → CTerm(T) and

� : Form(T)→ Form(T).

For each ϕ ∈ Form(T), we will denote by var(ϕ) the collection of all free variables of

ϕ. We are going to assume that the following conditions are satisfied in T:

• In the theory T:

– Modus Ponens
ϕ→ ψ ϕ

(MP)
ψ

1Here the Gödelization does not need to be the usual one in Arithmetic.
2This corresponds to a first-order modal theory.
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– Contraction Rule
ϕ→ (ϕ→ ψ)

(C)
ϕ→ ψ

• In the meta-theory:

– Universal Instantiation Rule

If {x0, . . . ,xn} ⊆ var(ϕ), then, for each t0, . . . , tn ∈ CTerm(T),

`T ϕ =⇒`T ϕ
[
t0 . . . tn
x0 . . .xn

]
where ϕ,ψ ∈ Form(T). In the Instantiation Rule we are considering the notation of

[Ebb+96]. In what follows, given ϕ(x0, . . . ,xn) ∈ Form(T) (x0, . . . ,xn are, at most, the free

variables3 of ϕ) and t0, . . . , tn ∈ CTerm(T), we will denote ϕ
[
t0...tn
x0...xn

]
, as usual, simply by

ϕ(t0, . . . , tn).

We now present an adaptation of Theorem R of Smullyan that traces diagonalization

to a common reasoning:

Smullyan Theorem (ST) (Adapted from [Smu94]). Given a theory T, a sufficient con-
dition for a formula R(x,y) ∈ Form(T�) to have a fixed point is that there be a formula
R′(x,y) ∈ Form(T�) and a function-symbol d such that:

(S1) There is t ∈ CTerm(T) such that ` R′(d(t), t);

(S2) For each t0, t1 ∈ CTerm(T), ` R′(t0, t1) implies ` R(t0,d(t1)).

Proof . Consider t ∈ CTerm(T) in the conditions of (S1). So, ` R′(d(t), t) and, by (S2),

` R(d(t),d(t)).

�

We trace back every form of diagonalization (used where) to a Smullyan like reasoning.

The following result is exactly Smullyan’s Theorem where d is the identity-function-

symbol:

Diagonalization Theorem (DT). Given a theory T, a sufficient condition for a formula
R(x,y) ∈ Form(T�) to have a fixed point is that there be a formula R′(x,y) ∈ Form(T�) such
that:

(D1) There is t ∈ CTerm(T) such that ` R′(t, t);

(D2) For each t0, t1 ∈ CTerm(T), ` R′(t0, t1) implies ` R(t0, t1).

3Given a formula ϕ, we are using the notation ϕ(x0, . . . ,xn) with the meaning of var(ϕ) ⊆ {x0, . . . ,xn}.
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4.4 Curry Systems and Löb Systems

We present, as follows, the general systems that will cover the Liar, Russell’s Paradox,

Curry’s Paradox, and Löb’s Theorem.

Definition 4.4.1. We say that C= 〈T,�,A(x),B(x), P 〉 is a Curry System, where A(x),B(x) ∈
Form1(T)∪ Sent(T) and P ∈ Sent(T), if:

C1.) For each X(x),Y (x) ∈ Form1(T�)∪ Sent(T�), given t ∈ CTerm(T), we have

X(t)↔ Y (t)
(�I)

�X(t)↔�Y (t)

C2.) `CA(G[A(x)])↔�B(G[A(x)]);

C3.) For each t ∈ CTerm(T), `CA(t)↔ (�B(t)→ P ).

Sometimes we will omite the theory when considering a Curry System:

C= 〈�,A(x),B(x), P 〉.

Let us analyse the previous definition. The condition C1.) is dispensable for the main

result about Curry Systems, but we decided to maintain it in the definition because it

is a very natural property to ask to be satisfied, and because it will play a role in the

systems that we will define. The operator � is intended to represent some notion of

truth or of provability. The sentence P represents a basis sentence and A(x) and B(x) are

formulas that generalize Curry’s Paradox layout — in the original Curry’s Paradox they

are one and the same. We are considering that � is a prioritary operator, in the sense

that �X(x)↔�Y (x) is to be considered as (�(X(x)))↔ (�(Y (x))). The main result about

Curry Systems is the following:

Curry’s Theorem. Let C = 〈�,A(x),B(x), P 〉 be a Curry System. We have that `C P . In
particular, if P =⊥, then `C⊥ (observe that we are not affirming ⊥ a priori in C).

Proof .

C2.)
A(G[A(x)])↔�B(G[A(x)])

C3.)
A(G[A(x)])↔ (�B(G[A(x)])→ P )

(Sm.)
A(G[A(x)])↔ (A(G[A(x)])→ P )

(C)
A(G[A(x)])→ P A(G[A(x)])↔ (A(G[A(x)])→ P )

A(G[A(x)]) A(G[A(x)])↔ (A(G[A(x)])→ P )

A(G[A(x)]) A(G[A(x)])→ P

P

�

We now turn our attention to the relation between the former proof and the Diago-

nalization Theorem. For the proof, the diagonalization of the formula A(y)↔ (A(x)→ P )
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— that corresponds to the step (Sm.) — is of most importance and we can derive its

diagonalization from the Diagonalization Theorem. Let us see how.

Consider R(x,y) as being A(y)↔ (A(x)→ P ) and R′(x,y) as being A(x)↔�B(y). Let us

see that the conditions of the Diagonalization Theorem are verified for R(x,y) and R′(x,y):

(D1) The verification of this hypothesis is a part of the previous proof:

A(G[A(x)])↔�B(G[A(x)])

R′(G[A(x)],G[A(x)])

hence `CR′(G[A(x)],G[A(x)]), as wanted, since G[A(x)] ∈ CTerm(T);

(D2) Let t0, t1 ∈ CTerm(T). Suppose that `CR′(t0, t1). So,

R′(t0, t1)
C3.)

A(t1)↔ (�B(t1)→ P )

A(t0)↔�B(t1) A(t1)↔ (�B(t1)→ P )

A(t1)↔ (A(t0)→ P )

R(t0, t1)

Therefore, `CR(t0, t1). By the arbitrariness of t0 and t1, we have verified the condi-

tion.

The previous theorem is the formal form of Curry’s Paradox. The Liar is Curry’s

Paradox where P =⊥. Russell’s Paradox follows from Curry’s Theorem by considering

in the theory of the set theory ZF: � as the trivial operator (the trivial meta-predicate),

Gas the function that assigns to each formula ϕ(x1, . . . ,xn) the closed-term {x|ϕ(x, . . . ,x)},
A(x) = x ∈ Ru, B(x) = x ∈ x, and P =⊥. Let us analyse what was described.

For Russell’s Paradox, the proof of Curry Theorem is simply

A(G[A(x)])↔�B(G[A(x)]) A(G[A(x)])↔ (�B(G[A(x)])→ P )

A(G[A(x)])↔ (A(G[A(x)])→ P )

A(G[A(x)])↔¬A(G[A(x)])

⊥

That is, in

A(G[A(x)])↔�B(G[A(x)]) A(G[A(x)])↔ (�B(G[A(x)])→ P )
(Sm.)

A(G[A(x)])↔ (A(G[A(x)])→ P )
A(G[A(x)])→ P A(G[A(x)])↔ (A(G[A(x)])→ P )

A(G[A(x)]) A(G[A(x)])↔ (A(G[A(x)])→ P )

A(G[A(x)]) A(G[A(x)])→ P

P

it is the highlighted area.
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The proof of Curry Theorem for Curry’s Paradox is the last section of the proof, i.e., in

A(G[A(x)])↔�B(G[A(x)]) A(G[A(x)])↔ (�B(G[A(x)])→ P )
(Sm.)

A(G[A(x)])↔ (A(G[A(x)])→ P )

A(G[A(x)])→ P A(G[A(x)])↔ (A(G[A(x)])→ P )

A(G[A(x)]) A(G[A(x)])↔ (A(G[A(x)])→ P )

A(G[A(x)]) A(G[A(x)])→ P

P

corresponds to the highlighted area.

What we have described confirmes that Curry systems generalize Curry’s Paradox,

the Liar, and Russell’s Paradox. Furthermore, it confirms that each highlighted area is

indispensable for a general system. Aiming the general study of Löb’s Theorem and its

relation to Curry’s Paradox we give the following definition:

Definition 4.4.2. We say that L= 〈T,�,A(x),B(x), P 〉 is a Löb System, where A(x),B(x) ∈
Form1(T)∪ Sent(T) and P ∈ Sent(T), if:

L1.) (Necessitation) For each ϕ ∈ Form(T�),

ϕ

�ϕ

L2.) (Internal Necessitation) For each ϕ ∈ Form(T�),

`L�ϕ→��ϕ;

L3.) (Box Distributivity) For each ϕ,ψ ∈ Form(T�),

`L�(ϕ→ ψ)→ (�ϕ→�ψ);

L4.) For each t ∈ CTerm(T),

`LA(t)↔ (�B(t)→ P );

L5.) `LA(G[A(x)])↔�B(G[A(x)]);

L6.) `LA(G[A(x)])↔ B(G[A(x)]).

We will sometimes omite the theory when considering a Löb System: L= 〈�,A(x),B(x), P 〉.

Now, we are going to analyse the relation between Löb Systems and the Peano Arith-

metic, PA. Let us consider, for each formula ϕ, G[ϕ] = pϕq and let us substitute each

occurrence of �, with a certain formula ϕ, for PT(pϕq). By the Diagonalization Lemma

applied to PPA(x) (see Chapter 2), we have that there is a sentence ϕ such that

`PA ϕ↔PPA(pϕq).
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If we take ϕ in the previous conditions and P as being the sentence 0 = 0, then

〈PA,PPA(p·q),ϕ,ϕ,P 〉 obeys to all the conditions that define a Löb System (we cannot

say that 〈PA,PPA(p·q),ϕ,ϕ,P 〉 is a Löb System due to a technical aspect: PPA(p·q) is not

necessarily an operator in the sense that we have been considering �).

We present the relation between Löb Systems and Curry Systems as follows:

Theorem 4.4.1. Every Löb System L= 〈�,A(x),B(x), P 〉 is a Curry System C= 〈�,A(x),B(x), P 〉.

Proof . L4.) is, in fact, C3.) and L5.) is C2.). Let us confirm that C1.) is valid. Let

X(x),Y (x) ∈ Form1(T�)∪ Sent(T�) and t ∈ CTerm(T). Then,

X(t)↔ Y (t)
L1.)

�(X(t)↔ Y (t))
L3.)

�X(t)↔�Y (t)

�

The following result generalizes Theorem 1 of [Lin06] and will allow the proof of a

general form of Löb’s Theorem.

Fixed Point Theorem. Let L = 〈�,A(x),B(x), P 〉 be a Löb System. We have that there is
Ψ ∈ Sent(L) such that

`LΨ ↔ (�Ψ → P ).

Proof . Consider Sas being the deduction

L5.)
A(G[A(x)])↔�B(G[A(x)])

L4.)
A(G[A(x)])↔ (�B(G[A(x)])→ P )

(Sm.)
A(G[A(x)])↔ (A(G[A(x)])→ P )

So,

S

L5.)
A(G[A(x)])↔�B(G[A(x)])

L6.)
A(G[A(x)])↔ B(G[A(x)])

L1.)
�(A(G[A(x)])↔ B(G[A(x)]))

L3.)
�A(G[A(x)])↔�B(G[A(x)])

A(G[A(x)])↔�A(G[A(x)])

A(G[A(x)])↔ (�A(G[A(x)])→ P )

�

By Theorem 4.4.1, we know that every Löb System is a Curry System. So, as each Curry

System has the reasoning of the Diagonalization Theorem, then also each Löb System

has the reasoning of that theorem. Moreover, the formula R(x,y) that was diagonalised

before is also the formula that is considered in this proof, which confirms, once again,

the universality and transversality of the reasoning of the Diagonalization Theorem and,

consequently, of Smullyan’s Theorem. The generalised form of Löb’s Theorem is:
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Löb’s Theorem. Let L= 〈�,A(x),B(x), P 〉 be a Löb System. Then

�P → P

P

Proof . Let us consider Ψ = A(G[A(x)]), D as being the deduction

Ψ ↔ (�Ψ → P )

Ψ → (�Ψ → P )
L1.)

�(Ψ → (�Ψ → P ))
L3.)

�Ψ →�(�Ψ → P )

D′ as being

�P → P

D
L3.)

�(�Ψ → P )→ (��Ψ →�P )

�Ψ → (��Ψ →�P )
L2.)

�Ψ →��Ψ
�Ψ →�P

�Ψ → P

By the Fixed Point Theorem, we have that

D′

�Ψ → P

D′

�Ψ → P

Fixed Point Theo.
Ψ ↔ (�Ψ → P )

(�Ψ → P )→ Ψ

Ψ
L1.)

�Ψ

P

�

As the proof of the Fixed Point Theorem uses the reasoning of the Diagonalization

Theorem, even more so the proof of the previous theorem uses the reasoning of the

Diagonalization Theorem.

Now we know that Curry’s Paradox’s layout — Curry System — generalizes Löb’s

Theorem’s layout — Löb System.

4.5 General Systems for Paradoxes

Curry Systems unify the considered paradoxes and Löb’s Theorem by means of a com-

mon structure. This structure underlies an “infinity” of paradoxes in the sense that we

can consider different theories and, for each theory, we can consider different formulas

A(x), B(x) and P . Although Curry Systems are very general, one can inquire if different

paradoxes can be considered as being a Curry System. There is a simple answer to that: if

a certain paradox shares the same structure of the previous paradoxes, being it a propo-

sitional paradox or a predicate paradox, it can be fitted into a Curry System. Now we

clarify what we mean by sharing the same structure:
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Definition 4.5.1. Givenϕ(x1, . . . ,xn) ∈ Form(T�) we say thatSϕ(x1,...,xn) = 〈T,�,A(x1),B(x1), P 〉
is a General System for ϕ(x1, . . . ,xn), where A(x1),B(x1) ∈ Form1(T)∪ Sent(T), where B(x1)

is a sub-formula of ϕ(x1 . . . ,xn) and P ∈ Sent(T), if:

G1.) For each X(x),Y (x) ∈ Form1(T�)∪ Sent(T�), given t ∈ CTerm(T), we have

X(t)↔ Y (t)
(�I)

�X(t)↔�Y (t)

G2.) `Sϕ(x1 ,...,xn)
A(G[A(x)])↔�B(G[A(x)]);

G3.) For each t ∈ CTerm(T), `Sϕ(x1 ,...,xn)
A(t)↔ ϕ(t, . . . , t).

The previous definition is a generalisation of the definition of a Curry System — the

condition C3.) is generalised for the condition G3.). We say that two types of reasonings

(paradoxal or non-paradoxal) share the same structure when they are both a General

System for ϕ(x1, . . . ,xn), for a certain ϕ(x1, . . . ,xn) ∈ Form(T�). Curry Systems are the

General Systems for �B(x)→ P . The formula ϕ(x1, . . . ,xn) plays a role similar to the one

played by a logical signature — the Liar fits into a Curry System because the negation can

be expressed using the implication and P =⊥.

For each formula ϕ(x1, . . . ,xn), the General Systems for ϕ(x1, . . . ,xn) correspond to new

versions of Russell’s Paradox. If they are not paradoxal, then they correspond, still, to

new versions of Löb’s Theorem. If they are paradoxal, they correspond to versions of

Curry’s Paradox. For each of the paradoxes in [ES08], we can consider a General System

that replicates, for different formulas, what was studied here.

4.6 Models of Curry Systems, and Consistency

We recall that we are tacitly assuming that T has some notion of satisfiability for

formulas where � does not occur. The systems that have been considered are similar to

a system of modal predicate logic. There are various approaches to the modal predicate

logic, in particular to the notion of model in this framework (see, for instances, [Bow79],

[Bus98], and [Alo05]). The following definition of model was inspired in the analogous

definitions in [Alo05] and [Bus98] (mostly the first one).

Definition 4.6.1. M = 〈W,R,〈Aw〉w∈W 〉 is a structure system for T if W is a nonempty

set, if R is a reflexive and transitive relation in W , if, for each w ∈ W , Aw = 〈Aw,Fw〉 is

a T-structure ([Bar93, p. 17]), and if, for each u,v ∈ W such that R(u,v), the following

properties are verified4:

St.1.) Au ⊆ Av ;

4In what follows, in this chapter, we will use the following symbols to denote the logical symbols for
the natural language: =⇒ (implication), ⇐⇒ (equivalence), & (conjunction),

∨
(disjunction),

A

(universal
quantification), and

E

(existential quantification).
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St.2.) If t ∈ Term(T) and s : Var(T)→ Au is an attribution (assignment)5, then5 tAu [s] =

tAv [s];

St.3.) If S is a relation-symbol of T, then6 SAu = SAv .

Given w ∈ W and an attribution s : Var(T) → Aw, we define inductively the relation

w  ϕ[s] for each formula ϕ of T� by7:

1.) If � does not occur in ϕ, then w  ϕ[s] ⇐⇒ Aw |= ϕ[s];

2.) w  (�ϕ)[s] ⇐⇒ (

A

w′ ∈W.R(w,w′) =⇒ w′  ϕ[s]);

3.) w  (ϕ ∧ψ)[s] ⇐⇒ (w  ϕ[s])&(w  ϕ[s]);

4.) w  (ϕ ∨ψ)[s] ⇐⇒ (w  ϕ[s])
∨

(w  ϕ[s]);

5.) w  (¬ϕ)[s] ⇐⇒∼ (w  ϕ[s]);

6.) w  (ϕ→ ψ)[s] ⇐⇒ ((w  ϕ[s]) =⇒ (w  ϕ[s]));

7.) w  (ϕ↔ ψ)[s] ⇐⇒ ((w  ϕ[s]) ⇐⇒ (w  ϕ[s]));

8.) ∼ (w ⊥ [s]);

9.) w  (∀x.ϕ)[s] ⇐⇒

A

a ∈ Aw.w  ϕ
[
s
(x
a

)]
;

10.) w  (∃x.ϕ)[s] ⇐⇒

E

a ∈ Aw.w  ϕ
[
s
(x
a

)]
.

Given w ∈W , we write w  ϕ if for every attribution s : Var(T)→ Aw, w  ϕ[s]. Further-

more, we say that ϕ is valid in M, and write M |= ϕ if, for each w ∈ W , w  ϕ. We say

that M is a model for a Curry System C and write M |= C (respectively, a model for a Löb

System L,M |= L) if for each theorem ϕ of the system,M |= ϕ. We say that a Curry System

C (respectively, a Löb System L) is consistent if there exists a model for C (respectively,

for L).

Theorem 4.6.1. Let M = 〈W,R,〈Aw〉w∈W 〉 be a structure system for T. We have that the
Converse Barcan formula is valid8:

(�∀x.ϕ)→ (∀x.�ϕ).

5See [Bar93, p. 20].
6See [Bar93, p. 17].
7See [Bar93, p. 21].
8This result is a confirmation that our notion of structure is sound. Intuitively, the result claims some-

thing that holds in the case where � is interpreted as being the provability predicate in PA: if `PA ∀x.ϕ, then
for each natural number n, `PA ϕ

[
n
x

]
.
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Proof . Let w ∈W . Consider an attribution s : Var(T)→ Aw and suppose that

w  (�∀x.ϕ)[s]. So, by 2.), we have that

A

w′ ∈W.(R(w,w′) =⇒ w′  (∀x.ϕ)[s]) and by 9.),

A

w′ ∈W.

(
R(w,w′) =⇒

(

A

a ∈ Aw′ .w′  ϕ
[
s

(
x
a

)]))
. (I)

Let us prove that w  (∀x.�ϕ)[s], which, by 9.), is equivalent to

A

a ∈ Aw.w  �ϕ
[
s
(x
a

)]
,

that, by 2.), is

A

a ∈ Aw.
(

A

w′ ∈W.

(
R(w,w′) =⇒ w′  ϕ

[
s

(
x
a

)]))
.

Let us take a ∈ Aw and w′ ∈ W such that R(w,w′). As R(w,w′), we have that Aw ⊆ Aw′ ,
and so a ∈ Aw′ . By (I), we conclude that w′  ϕ

[
s
(x
a

)]
, as wanted. So, w  ((�∀x.ϕ) →

(∀x.�ϕ))[s]. By the arbitrary choice of s, we have that w  ((�∀x.ϕ)→ (∀x.�ϕ)). Further-

more, by the arbitrary choice of w ∈W we have that M |= ((�∀x.ϕ)→ (∀x.�ϕ)).

�

Now we prove a very important result: a consistency result for certain Curry Systems

and Löb Systems.

Consistency Theorem. If T is consistent, if A(x), B(x) ∈ Form1(T)∪ Sent(T), P ∈ Sent(T),
and if A(x), B(x) and P are provable (hence true) in T, then L= 〈T,�,A(x),B(x), P 〉 (respec-
tively, C= 〈T,�,A(x),B(x), P 〉) is consistent.

Proof . Let us suppose that T is consistent, that A(x), B(x) ∈ Form1(T) ∪ Sent(T), P ∈
Sent(T), and that A(x), B(x) and P are provable in T. Let N = 〈N,F〉 be a model of T. We

have that N |= A(x), N |= B(x), and N |= P . Let us consider W = Term(T), R the identity

relation in W , and, for each w ∈W , Aw = N. Furthermore, consider M = 〈W,R,〈Aw〉w∈W 〉.
We have that M is a structure system for T.

Take L= 〈T,�,A(x),B(x), P 〉. Let us prove that M |= L.

L1.) Let us suppose that M |= ϕ. Consider w ∈ W and s : Var(T) → Aw an attribution.

By hypothesis, w  ϕ[s]. Let w′ ∈ W be such that R(w,w′). Hence, w = w′, and so

w′  ϕ[s]. We can, therefore, conclude that

A

w′ ∈W.(R(w,w′) =⇒ w′  ϕ[s]), which

means that w  (�ϕ)[s]. By the arbitrariness of s we have that w  �ϕ, and by the

arbitrariness of w we have that M |=�ϕ.

L2.) Let w ∈W and s : Var(T)→ Aw be an attribution. Suppose that w  (�ϕ)[s]. So,

A

w′ ∈W.(R(w,w′) =⇒ w′  ϕ[s]).

Let us prove that w  (��ϕ)[s], which is equivalent to

A

w′ ∈W.(R(w,w′) =⇒ w′ �ϕ[s]),
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that is

A

w′ ∈W.((R(w,w′) =⇒ (

A

w′′ ∈W.(R(w′ ,w′′) =⇒ w′′  ϕ[s])))).

For that purpose, consider w′ ,w′′ ∈W such that R(w,w′) and R(w′ ,w′′). As R is tran-

sitive, we have that R(w,w′′). So w = w′′, from which we conclude that w′′  ϕ[s].

Therefore, w  (��ϕ)[s]. So, w  (�ϕ→ ��ϕ)[s]. By the arbitrariness of s and w,

we have that M |= (�ϕ→��ϕ).

L3.) Take w ∈W and s : Var(T)→ Aw an attribution. Let us suppose that

w  (�(ϕ→ ψ))[s]. So,

A

w′ ∈W.(R(w,w′) =⇒ w′  (ϕ→ ψ)[s]),

and consequently

A

w′ ∈W.(R(w,w′) =⇒ (w′  ϕ[s] =⇒ w′  ψ[s])). (I)

Let us prove that w  (�ϕ→�ψ)[s]. Suppose that w  (�ϕ)[s], that is

A
w′ ∈W.(R(w,w′) =⇒ w′  ϕ[s]). (II)

Let w′ ∈W be such that R(w,w′). So, as by (I) we have that w′  ϕ[s] =⇒
w′  ψ[s] and by (II) we have that w′  ϕ[s], we can conclude that w′  ψ[s]. By the

arbitrariness of w′ we conclude that w  (�ψ)[s]. All this means that w  (�ϕ →
�ψ)[s] and, by the arbitrariness of w and s, M |= (�(ϕ→ ψ)→ (�ϕ→�ψ)).

L4.) Consider a ∈ CTerm(T). As we observed before, we have that N |= A(x), N |= B(x), and

N |= P . So, N |= A(a), N |= B(a). As A(x), B(x) and P are formulas of L, this means that

M |= A(a), M |= B(a), and M |= P . By L1.), M |= �B(a). Let w ∈W and s : Var(T)→ Aw
be an attribution. In particular, we have that w  A(a)[s], w �B(a)[s], and w  P [s].

So, w  (�B(a)→ P )[s]. Therefore, w  (A(a)↔ (�B(a)→ P ))[s]. By the arbitrariness

of w and s, M |= (A(a)↔ (�B(a)→ P )).

L5.), L6.) By what was seen in L4.), given a ∈ CTerm(T), M |= A(a), M |= B(a), and M |=
�B(a). In particular, M |= A(G[A(x)]), M |= B(G[A(x)]), and M |= �B(G[A(x)]). Let

w ∈ W and s : Var(T) → Aw be an attribution. We have that w  A(G[A(x)])[s],

w  B(G[A(x)])[s], and w  (�B(G[A(x)])[s]. So, w  (A(G[A(x)]) ↔ B(G[A(x)]))[s]

and w  (A(G[A(x)])↔�B(G[A(x)]))[s]. By the arbitrariness of w and s, we conclude

that M |= (A(G[A(x)])↔�B(G[A(x)])), and M |= (A(G[A(x)])↔ B(G[A(x)])).

The proof of the consistency of C= 〈T,�,A(x),B(x), P 〉 is similar.

�
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APPROACH TO PARADOXES

The previous result is very important because it shows that there are some consistent

situations, just like Löb’s Theorem; which avoids the trivialities of inconsistent systems.

In sum, Curry’s Paradox layout generalizes the Liar, Russell’s Paradox, general forms

of diagonalization like the Liar, and Löb’s Theorem reasoning. Where diagonalization is

used, one can apply the reasoning of Smullyan’s Theorem. If the sentence P in Curry’s

Paradox is unprovable, then we get something like the Liar, if P is provable, we are in

a Löb’s Theorem’s like layout. There are consistent situations where a reasoning like

Curry’s Paradox is valid (Consistency Theorem).
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5
General Theory of Diagonalization

In this chapter we will present a general theory of diagonalization. We will move

towards the goal of the next chapter: the study of Mathematical examples.

Just like the confirmation that ZF can capture the majority of Mathematics comes from

examples, also the theory that we will present is confirmed to be behind the majority of

important diagonalization phenomenon by the study of relevant Mathematical examples.

We start by presenting the language of the general theory.

Definition 5.0.1. Let D0 be the First-Order Language having a binary function-symbol ◦,
and a unary relation-symbol W. We use the convention that st denotes s◦ t and we define:

t : W := W(t);

∃x : W. A := ∃x. (x : W∧A);

∀x : W. A := ∀x. (x : W→ A);

t : W→W := ∀x : W. (tx : W);

t : (W→W)→ (W→W) := ∀x : W→W. (tx : W→W).

It is important to keep in mind that the intuitive interpretation of ◦ is that of function

application. Now we define the general theory.

Definition 5.0.2. We say that D = 〈T,ϕ,ϕ′〉 is a diagonal theory if T is a First-Order Theory

whose language includes D0, if ϕ is a two-free-variable-formula, ϕ′ is a formula that has

at most four free-variables, and if it has the axiom:

∃d : (W→W)→ (W→W). (AxD1(d)∧AxD2(d)), (AxD)

where

AxD1(d) := ∃F : W→W. ∃x. ∀y. ϕ′(dF,F,x,y);
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AxD2(d) := ∀G : W→W. ∀H : W→W. ∀x. (ϕ′(G,H,x,x)→ ϕ(Gx,dHx)).

The naïve idea behind the previous definition is that it is being used a form of double

diagonalization: firstly, there is a meta diagonalization of the “functions” (the intuitive

interpretation of elements f : W → W is that of a function) — using d : (W → W) →
(W→W) and axiom AxD1 — ; and finally there is a diagonalization at the level of terms

— captured by the axiom AxD2 that allows the carry of the diagonalization from axiom

AxD1. We present, as follows, the confirmation that a diagonal theory D = 〈T,ϕ,ϕ′〉
proves the diagonalization of ϕ as was previously described in an intuitive way.

General Diagonalization Theorem (GDT). Let D = 〈T,ϕ,ϕ′〉 be a diagonal theory. Then,
`T ∃z. ϕ(z,z).

Proof .

1 ∃d : (W →W )→ (W →W ). (AxD1(d)∧AxD2(d)) (AxD)

2 AxD1(d0)∧AxD2(d0) (Hyp. d0)

3 ∃F :W →W. ∃x. ∀y. ϕ′(d0F,F,x,y) AxD1(d0)

4 ∀G :W →W. ∀H :W →W. ∀x. (ϕ′(G,H,x,x)→ ϕ(Gx,d0Hx)) AxD2(d0)

5 ∃x. ∀y. ϕ′(d0F0,F0,x,y) (Hyp. F0)

6 ∀y. ϕ′(d0F0,F0,x0, y) (Hyp. x0)

7 ϕ′(d0F0,F0,x0,x0) ∀E (6)

8 ϕ′(d0F0,F0,x0,x0)→ ϕ(d0F0x0,d0F0x0) ∀ E (4)

9 ϕ(d0F0x0,d0F0x0) →E (7,8)

10 ∃z. ϕ(z,z) ∃I (9)

11 ∃z. ϕ(z,z) ∃E (5,7–10)

12 ∃z. ϕ(z,z) ∃E (3,5–11)

13 ∃z. ϕ(z,z) ∃E (1,2–12)

�

5.1 Towards the Study of Diagonalization in Mathematics

Now we move towards the application of GDT to “everyday Mathematics”. The fol-

lowing result is the model version of the GDT and follows immediately from it.
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Theorem 5.1.1. A sufficient condition for a binary relation R on a set S to have a fix point is
that there be a relation R′ such that R and R′ are relations on a structure M that is a model of a
diagonal theory D, where R is interpreting ϕ, and where R′ is interpreting ϕ′.

Now we present a more explicit version of the previous result.

Structural General Diagonalization Theorem (SGDT). A sufficient condition for a binary
relation R on a set S to have a fix point is that there be a relation R′ ⊆ SS × SS × S × S and a
function d : (S→ S)→ (S→ S) such that:

(SGDT1) There is a function F : S→ S and x ∈ S such that for all y ∈ S, R′(d(F),F,x,y);

(SGDT2) For all functionG,H : S→ S and for all x ∈ S, ifR′(G,H,x,x), thenR(G(x), (d(H))(x)).

Proof . Let F : S → S and x ∈ S be in the conditions of (SGD1). Then, for all y ∈
S, R′(d(F),F,x,y) holds; in particular, R′(d(F),F,x,x) holds. By (SGD2) follows that

R((d(F))(x), (d(F))(x)), as wanted.

�

The previous proof corresponds to a model-theoretic version of the formal proof of

the GDT. Now we present yet another version of the GDT: this time it is a Category

Theory version.

Category Theory General Diagonalization Theorem (CTGDT). In a category C, given
an object S, a sufficient condition for a binary relation R ⊆ Hom(1,S)×Hom(1,S) to have a
fix point is that there be objects A,B, a relation R′ ⊆ Hom(A,S) ×Hom(A,B) ×Hom(1,A) ×
Hom(1,A), and a function d : Hom(A,B)→Hom(A,S) such that:

(CTGD1) There are morphisms f : A→ B and x : 1→ A such that for all y : 1→ A,
R′(d(f ), f ,x,y);

(CTGD2) For all morphisms g : A→ S, h : A→ B and for all x : 1→ A, if R′(g,h,x,x), then
R(xg,xd(h)).

Proof . Let f : A → B and x : 1 → A be in the conditions of (CTGD1). Then, for all

y : 1 → A, R′(d(f ), f ,x,y). In particular, R′(d(f ), f ,x,x) is the case. But by (CTGD2)

follows that R(xd(f ),xd(f )), as wanted.

�

To end this chapter we prove that Theorem R is a particular case of the SGDT: we

recall that Theorem R was heavily used in Chapter 4.

Theorem R (TR). A sufficient condition for a relation R(x,y) on a class N to have a fixed
point is that there be a relation R′(x,y) on N and a function d :N →N such that:

(R1) There is a ∈N such that R′(d(a), a);
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(R2) For each x,y ∈N , R′(x,y) implies R(x,d(y)).

Proof . Let d1 : (N →N )→ (N →N ) be the function given by

d1(F) := d ◦F.

Let R′1(G,H,x,y) be the relation R′(G(x),H(x)). Let us see that the conditions of the SGDT

are satisfied for R, R′1, and d1:

(SGDT1) By hypothesis, there is a ∈ N such that R′(d(a), a). So, there is a ∈ N such that

R′((d◦idN )(a), idN (a)) (where idN denotes the identity function onN ), i.e., there

is a ∈N such that R′1(d1(idN ), idN , a,y). Hence, there is a function F : S→ S and

x ∈ S such that for all y ∈ S, R′1(d1(F),F,x,y).

(SGDT2) Let G,H : S→ S be functions and x ∈ S. Let us suppose that R′1(G,H,x,x) holds.

Then, by hypothesis, we have that R′(G(x),H(x)), and thus R(G(x),d(H(x))). So,

we have that R(G(x), (d◦H)(x)), i.e., R(G(x), (d1(H))(x)). In sum, for all functions

G,H : S→ S and for all x ∈ S, if R′1(G,H,x,x), then R(G(x), (d1(H))(x)).

By the SGDT we have that R has a fixed point.

�
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6
Mathematical Examples

In this chapter we will study several examples of diagonalization from Mathematics

and we will show that all of them are a particular case of the reasoning of the GDT.

6.1 Lawvere’s Diagonal Argument

In this section we will show that the main result of the paper [Law69] — 1.1.Theorem

— is a particular case of the CTGDT. We will also see that the two main theorems of

[YM03] are a consequence of the main result from [Law69]. We will follow the notions

introduced in [Law69].

We start by recalling that a cartesian closed category is a category C equipped with

the following three kinds of right-adjoints: a right adjoint 1 to the unique

C 1,

a right-adjoint × to the diagonal functor

C C×C,

and for each object A in C, a right-adjoint ( )A to the functor

C C.
A× ( )

The adjoint transformations for these adjoint situations, assumed given, will be denoted

by λA, εA in our case of exponentiation by A. Thus, for each X we have

AX (A×X)A
XλA
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and for each Y

A×Y A Y .
Y εA

Given f : A×X→ Y , the composite morphism

X (A×X)A Y A
XλA f A

will be called the λ-transform of the morphism f . A morphism h : X → Y A is the λ-

transform of f if, and only if, the following diagram commutes

A×X

A×Y A Y

f
A× h

Y εA

In particular, f is uniquely recovered from its λ-transform. For the particular case of

X = 1, every f : A→ Y gives rise to a unique pf q : 1→ Y A and every 1→ Y A is of that

very form for a unique f . Since for every a : 1→ A one has, dropping the indices A,Y on

ε,

〈a,pf q〉ε = af .

We say that

X Y A
g

is weakly point-surjective if for every f : A→ Y there is x such that for all a : 1→ A,

〈a,xg〉ε = af .

Furthermore, we say that an object Y has the fixed point property if for every endomor-

phism t : Y → Y there is y : 1→ Y such that y.t = y.

Lawvere Theorem ([Law69]). In any cartesian closed category, if there is an object A and a
weakly point-surjective morphism

A Y A
g

then Y has the fixed point property.

Proof . Let t : Y → Y be a fixed morphism. Given a morphism f : A→ Y A, let f be the

morphism whose λ-transform is f . We have that for every f : A→ Y there is x : 1→ A

such that for all a : 1→ A

〈a,x〉g = af .
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Let us consider R′ ⊆Hom(A,Y )×Hom(A,Y A)×Hom(1,A)×Hom(1,A) be the relation such

that R′(f ,h,x,y) if, and only if,

〈x,y〉h = xf t.

Let us also consider R ⊆ Hom(1,Y ) ×Hom(1,Y ) be the relation such that R(x,y) if, and

only if, xt = y; and the function d : Hom(A,Y A)→Hom(A,Y ) given by

d(g) = (Aδ)g.

Let us see that the conditions of the CTGDT are satisfied:

(CTGD1) Let us consider the composition

A A×A Y Y .
Aδ g t

There is an x : 1→ A such that for all a : 1→ A

〈a,x〉g = a(Aδ)gt,

that is,

〈a,x〉g = ad(g)t;

which is equivalent, by definition, to R′(d(g), g,x,a). Hence, there are f : A→
Y A and x : 1→ A such that for all y : 1→ A, R′(d(f ), f ,x,y) holds.

(CTGD2) Let us consider morphisms f : A→ Y , h : A→ Y A, and x : 1→ A. Furthermore,

let us suppose that R′(f ,h,x,x) holds. Then,

〈x,x〉h = xf t,

and so

x(Aδ)h = xf t.

So, we have

xd(h) = xf t,

and thus R(xf ,xd(h)). So, for all morphisms f : A→ Y , h : A→ Y A and for all

x : 1→ A, if R′(f ,h,x,x), then R(xf ,xd(h)).

By CTGDT we have that R has a fixed point.

�

In [Law69] it is shown that the result that we proved is responsible for a great va-

riety of diagonalization arguments: Russell’s Paradox, Cantor’s Theorem, and Tarski’s

(Undefinability of Truth) Theorem. We now present one of the two main results from

[YM03].
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Yanofsky Diagonal Theorem ([YM03]). If Y is a set and there are a set A and a function
f : A×A→ Y such that all functions g : A→ Y are representable by f (there is an a ∈ A such
that g(·) = f (·, a)), then all functions α : Y → Y have a fixed point.

Proof . Let us consider the category Set as being the category of sets. It is clear that Set is

cartesian closed. Let us consider f̃ : A→ Y A as being given by

(f̃ (a0))(a1) := f (a1, a0).

By construction and under the previously introduced notations, since Set is cartesian

closed, for every h : A→ Y there is x : 1→ A such that for all a : 1→ A,

〈a,xf̃ 〉ε = ah.

This means that f̃ : A→ Y A is a weakly point-surjective morphism. By Lawvere Theorem

we have that Y has the fixed point property. Hence, all functions α : Y → Y have a fixed

point.

�

The previous result is confirmed in [YM03] to be responsible for: Diagonalization

Lemma (that was presented in Chapter 2), Gödel’s First Incompleteness Theorem, Tarski’s

Theorem, Parikh Sentences, Löb’s Paradox, Recursion Theorem, and Von Neumann’s Self-

reproducing Machines.

The following result — the other main result from [YM03] — is the contrapositive of

Yanofsky Diagonal Theorem.

Yanofsky Cantor’s Theorem ([YM03]). If Y is a set and there is a function α : Y → Y

without fixed points (for all y ∈ Y , α(y) , y), then for all sets A and for all functions f :

A ×A→ Y there is a function g : A→ Y that is not representable by f , i.e., such that for all
a ∈ A, g(·) , f (·, a).

The Yanofsky Cantor’s Theorem was analysed in great detail in [YM03], where the

author concluded that it was responsible for: Cantor’s N � ℘(N) Theorem, Russell’s

Paradox, Grelling’s Paradox, Liar Paradox, Richard’s Paradox, Turing’s Halting Problem,

a Non-Recursively Enumerable Language, and an Oracle B such that P B ,NP B.

6.2 Knaster-Tarski Theorem

In the present section, we are going to use TR to prove the Knaster-Tarski Theorem.

After that, we are going to prove the Banach Mapping Theorem using directly the Knaster-

Tarski Theorem, and we are going to prove the Schröder-Bernstein Theorem using, by its

turn, directly the Banach Mapping Theorem. This means that we are going to trace back

those three Theorems to TR.
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Knaster-Tarski Theorem ([Sha16, p. 9]). If X is a set and Φ :℘(X)→℘(X) is a mapping
that preserves set-containment, then Φ has a fixed point.

Proof . Here we are going to apply TR by taking N as being V (the Universe of Set Theory,

see, for instance, [TZ71, p. 19]). Let us consider the relation R(X,Y ) given by

Φ(X) = Y ,

the relation R′(X,Y ) given by

(∀x ∈ Y . x ⊆ Φ(x))∧ (∪Y ⊆ X)∧ (∪Y ∈ Y )∧ (Φ(X) ⊆ ∪Y )∧X ∈℘(X).

Furthermore, let us the function d given by:

d(X) := ∪X.

Let us see that the conditions of TR are satisfied for R(X,Y ), for R′(X,Y ), and for d:

(R1) Consider E = {E ∈ ℘(X) | E ⊆ Φ(E)}. We have that E ∈ ℘(℘(X)). Let us see that

R′(d(E),E) is the case. By definition, we have that

∀x ∈ E. x ⊆ Φ(x),

and

∪E⊆ ∪E= d(E).

Let E ∈ E. So, E ⊆ ∪E, hence, Φ(E) ⊆ Φ(∪E). As E ∈ E, we also have that E ⊆ Φ(E),

therefore E ⊆ Φ(∪E). Consequently,

∀E ∈ E. E ⊆ Φ(∪E),

from where it follows that ∪E⊆ Φ(∪E) and, as we also have that E∈℘(℘(X)), we

have that ∪E∈℘(X) and ∪E⊆ Φ(∪E), which implies that ∪E∈ E.

We concluded that ∪E ⊆ Φ(∪E), so we also have that Φ(∪E) ⊆ Φ(Φ(∪E)), from

where we conclude that Φ(∪E) ∈ E, and so Φ(d(E)) ⊆ ∪E.

In all, we have

(∀x ∈ E. x ⊆ Φ(x))∧ (∪E⊆ d(E))∧ (∪E∈ E)∧ (Φ(d(E)) ⊆ ∪E)∧ d(E) ∈℘(X),

so R′(d(E),E) is the case.

(R2) Let us consider X,Y ∈ V . Let us suppose that R′(X,Y ) is the case. So,

(∀x ∈ Y . x ⊆ Φ(x))∧ (∪Y ⊆ X)∧ (∪Y ∈ Y )∧ (Φ(X) ⊆ ∪Y )∧X ∈℘(X).

We have, by hypothesis, that Φ(X) ⊆ ∪Y . As ∪Y ∈ Y and ∀x ∈ Y . x ⊆ Φ(x), we

have that ∪Y ⊆ Φ(∪Y ). But, as ∪Y ⊆ X ⊆ X, we also have that Φ(∪Y ) ⊆ Φ(X), and

so ∪Y ⊆ Φ(X). In all, Φ(X) ⊆ ∪Y and ∪Y ⊆ Φ(X), hence Φ(X) = ∪Y = d(Y ), i.e.,

R(X,d(Y )) holds. So, R′(X,Y ) implies R(X,d(Y )).
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By TR, we conclude that R(X,Y ) has a fixed point, so Φ has a fixed point.

�

Now, we show how the Banach Mapping Theorem is a direct consequence of the

Knaster-Tarski Theorem.

Banach Mapping Theorem ([Sha16, p. 8]). Given sets X and Y , and functions f : X→ Y

and g : Y → X, there is a subset A of X whose complement is the g-image of the complement of
f (A).

Proof . Let us consider Φ :℘(X)→℘(X) given by

Φ(E) := X \ g(Y \ f (E)).

It is clear that Φ is a mapping that preserves set-containment, so, by the Knaster-Tarski

Theorem, there is A ∈℘(X) such that A = Φ(A). So,

X \A = X \Φ(A) = X \ (X \ g(Y \ f (A))) = g(Y \ f (A)).

�

Finally, we show that the Schröder-Bernstein Theorem is a corollary of the Banach

Mapping Theorem.

Schröder-Bernstein Theorem [Sha16, p. 8]. If X and Y are sets for which there is a one-
to-one mapping taking X into Y and a one-to-one mapping taking Y into X, then there is a
one-to-one mapping taking X onto Y .

Proof . Let us suppose that f : X → Y and g : Y → X are one-to-one. By the Banach

Mapping Theorem, there is A ∈℘(X) such that X \A = g(Y \f (A)). Let us define h : X→ Y

given by:

h(x) =

f (x), x ∈ A

g−1(x), x ∈ X \A

It is clear that h satisfies the desired conditions.

�

6.3 General Fixed Point Theorem

In this section we are going to formalise a broad notion of limit and state some condi-

tions for a fixed point theorem for that broad limits. After that, we will analyse two fixed

point theorems — one from Set Theory and the other from Functional Analysis.

The following definition allows to consider some important sequences.
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Definition 6.3.1. Given X , ∅, we say that a function f : X → X is preserved in A⊆ XN

(where XN denotes the class of all functions (sequences) from N to X) if1, for each x ∈A,

〈f (xn)〉n∈N ∈A.

The next definition generalizes some important properties of the notion of limit.

Definition 6.3.2. Let X , ∅ and A ⊆ XN. We say that a function F : A→ X is a limit
function if:

Lim1.) For each x ∈A, 〈xn+1〉n∈N ∈A;

Lim2.) For each x ∈A, F(x) = F(〈xn+1〉n∈N).

The following definition captures the notion of continuity in this broad sense.

Definition 6.3.3. Given X , ∅, we say that a function f : X→ X is continuous with respect
to a function F : A→ X if f is preserved in A, if F is a limit function, and if the following

conditions are satisfied:

Cont1.) There is an α ∈ X such that 〈f n(α)〉n∈N ∈A;

Cont2.) For each x ∈A, F(〈f (xn)〉n∈N) = f (F(x)).

Now the general theorem that garanties the existence of fixed points for this broad

notion of limit:

General Fixed Point Theorem. Let X , ∅, A⊆ XN, and f be a continuous function with
respect to F : A→ X. We have that f has a fixed point.

Proof . Let us consider the relationsR(x,y) andR′(x,y) in Agiven by, respectively, f (F(x)) =

F(y) and f (F(x)) = F(〈f (yn)〉n∈N). Let us take d : A→ A given, for each x ∈ A, by

d(x) = 〈f (xn)〉n∈N.

Let us suppose that R′(x,y) is the case. Then, f (F(x)) = F(〈f (yn)〉n∈N), and so f (F(x)) =

F(d(y)), i.e., R(x,d(y)). Hence, R′(x,y) implies R(x,d(y)).

Take α ∈ X in the conditions of Cont1.). Consider z ∈ A given, for each n ∈ N, by

zn = f n(α). By Lim1.), Lim2.), and Cont2.), we conclude that

f (F(d(z))) = f (F(〈f (zn)〉n∈N)) = F(〈f (f (zn))〉n∈N) = F(〈f n+2(α)〉n∈N) =

= F(〈f (n+1)+1(α)〉n∈N) = F(〈f n+1(α)〉n∈N) = F(〈f (zn)〉n∈N).

Hence, R′(d(z), z).

Consequently, by TR we conclude that R(x,y) has, at least, one fixed point, say h ∈A.

So, R(h,h), that is, f (F(h)) = F(h). Therefore, f has, at least, one fixed point.

�

1Given x ∈ XN (a sequence), we will use the notation xn, for each n ∈ N, to represent the n-th element of
the sequence, that is, x(n).
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6.3.1 Fixed point Lemma for Normal Functions

We are going to use the previous theorem to prove the Fixed Point Lemma for Normal

Functions.

Definition 6.3.4. We say that f : On→On is a normal function if f satisfies the following

conditions:

(1) α < β→ f (α) < f (β);

(2) If λ is a limit ordinal, then f (λ) = sup{f (α) | α < λ}.

In [Dev94, p. 73] it is proved that if f is a normal function and α ∈On, then α ≤ f (α),

and in [Lev79, p. 117] it is proved that, given a non-empty set of ordinals A and a normal

function f , we have

f (supA) = sup{f (α) | α ∈ A}. (Sup)

Fixed Point Lemma for Normal Functions ([Veb08],[Dev94, p. 73]). Every normal func-
tion has a fixed point.

Proof . Consider f a normal function. Let us take the class A= {x ∈OnN | x is increasing}.
Given x ∈A, let us take x = {xn | n ∈ N}. As f is normal, by condition (1) of the definition,

given x ∈A, 〈f (xn)〉n∈N ∈A; consequently f is preserved in A.

Let us see that the conditions of the General Fixed Point Theorem are satisfied. It is

clear that F : A→ On given, for each x ∈ A, by F(x) = supx is a limit function. Let us

consider β ∈On and α = 〈αn〉n∈N given by:α0 = β

αn+1 = f (αn), n ∈ N

It is clear, by what was observed, that α is increasing, that is, α ∈A. Let x ∈A. So, as x is

increasing, we have

F(〈f (xn)〉n∈N) = sup〈f (xn)〉n∈N = sup{f (xn) | n ∈ N} = f (sup{xn | n ∈ N}) =

= f (supx) = f (F(x)).

In all, f is continuous with respect to F, so, by the General Fixed Point Theorem, f has,

at least, one fixed point.

�

The previous theorem was proved using the General Fixed Point Theorem and, this

last result, in its turn, depends on TR. So, the Fixed Point Lemma for Normal Functions

also follows from TR by considering, in A, R(x,y) as being f (supx) = supy, R′(x,y) as

being f (supx) = sup(〈f (yn)〉n∈N), and the function d : A→ A such that, for each x ∈ A,

d(x) = 〈f (xn)〉n∈N.
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In [Mos06, p. 76] it is presented the Continuous Least Fixed Point Theorem. This

theorem is also a consequence of the General Fixed Point Theorem and the proof is very

similar to the previous proof — instead of considering the order in the ordinals, one con-

siders a general inductive order and countably continuous mappings (they are mappings

which satisfy the (Sup) property).

6.3.2 Banach Fixed Point Theorem

In order to state the Banach Fixed Point Theorem we need the following definitions

(the reader can easily find them in books on Functional Analysis or Topology, for instance,

we considered [Con14], [SV06], and [KK01]).

Definition 6.3.5. We say that 〈X,d〉 is a metric space if d is a function from X ×X to2 R+
0

and if, for each x,y,z ∈ X, the following properties are verified:

(1) d(x,y) = 0↔ x = y;

(2) d(x,y) = d(y,x) (symmetry);

(3) d(x,z) ≤ d(x,y) + d(y,z) (triangular inequality).

Definition 6.3.6. Let 〈X,d〉 be a metric space and x ∈ XN. We say that x is a Cauchy
sequence if

∀ε > 0. ∃N ∈ N. ∀m,n > N. d(xm,xn) < ε.

We say that x is convergent if

∃L ∈ X. ∀ε > 0. ∃N ∈ N. ∀n > N. d(xn,L) < ε.

It is a well-known fact that the limit of a convergent sequence x ∈ XN is unique. We will

use limxn or limx to denote the limit of a convergent sequence x ∈ XN.

Definition 6.3.7. Let 〈X,d〉 be a metric space. We say that 〈X,d〉 is complete if every

Cauchy sequence is convergent.

Definition 6.3.8. Let 〈X,d〉 be a metric space. A function T : X→ X is called a contraction
mapping (on X) if

∃q ∈ [0,1). ∀x,y ∈ X. d(T (x),T (y)) ≤ qd(x,y).

We are going to prove Banach Fixed Point Theorem using the General Fixed Point

Theorem.3

2Here R+
0 = {x ∈ R | x ≥ 0}.

3We will only state the existence part of the Banach Fixed Point Theorem, because the unicity part does
not use a diagonalization reasoning.
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Banach Fixed Point Theorem ([KK01]). Let 〈X,d〉 be a non-empty complete metric space
with a contraction mapping T : X→ X. Then, T has a fixed point.

Proof . Let A= {x ∈ XN | x is a Cauchy sequence}. Take q ∈ [0,1) such that

∀x,y ∈ X. d(T (x),T (y)) ≤ qd(x,y).

Consider x ∈A. So, as x is a Cauchy sequence,

∀ε > 0. ∃N ∈ N. ∀m,n > N. d(xm,xn) < ε.

Let us prove that 〈T (xn)〉n∈N ∈A, that is, let us prove that 〈T (xn)〉n∈N is a Cauchy sequence.

Let ε > 0. We have that there is N ∈ N such that ∀m,n > N. d(xm,xn) < ε
q . Let m,n > N .

Hence, d(T (xm),T (xn)) ≤ qd(xm,xn) < q · εq = ε. So, 〈T (xn)〉n∈N ∈A, as wanted. This means

that T is preserved in A.

Take F : A→ X given, for each x ∈ A, by F(x) = limx. As 〈X,d〉 is complete, we have

that F is well-defined. Furthermore, it is obvious that F is a limit function.

Let us prove that T is continuous with respect to F. Let x0 ∈ X. Consider α ∈ XN given,

for each n ∈ N, by αn = T n(x0). Let us prove that α ∈ A. For that, let us firstly prove, by

induction on n, that:

∀n ∈ N. d(αn+1,αn) ≤ qnd(α1,α0). (I)

For n = 0 the result is obvious. Let us suppose, by induction hypothesis, that (I) hold for

n ∈ N. Then,

d(α(n+1)+1,αn+1) = d(αn+2,αn+1) = d(T (αn+1),T (αn)) ≤ qd(αn+1,αn) ≤ qn+1d(α1,α0).

So, (I) holds. Let us now prove that α is a Cauchy sequence. Let ε > 0. Take N ∈ N such

that

qN <
ε(1− q)
d(α1,α0)

.

Let m,n > N be such that m > n. Then, by the triangular inequality, by the fact that∑∞
k=0 q

k = 1
1−q as q ∈ [0,1), and by (I), we have that

d(αm,αn) ≤
m−1∑
i=n

d(αi+1,αi) ≤
m−1∑
i=n

qid(α1,α0) = qnd(α1,α0)
m−n−1∑
k=0

qk ≤ qnd(α1,α0)
∞∑
k=0

qk =

qnd(α1,α0)
(

1
1− q

)
< qNd(α1,α0)

(
1

1− q

)
<
ε(1− q)
d(α1,α0)

d(α1,α0)
(

1
1− q

)
= ε.

Consequently, α is a Cauchy sequence, i.e., α ∈ A. Let x ∈ A. As every contraction

mapping is continuous (in the usual topological sense), we have that

F(〈T (xn)〉n∈N) = limT (xn) = T (limxn) = T (limx) = T (F(x)).

In all, T is continuous with respect to F. So, by the General Fixed Point Theorem, we

conclude that T has a fixed point. �
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Once again, the previous theorem was proved using the General Fixed Point Theorem

that depends on TR. So, the Banach Fixed Point Theorem also follows from (TR) by con-

sidering, in A, R(x,y) as being T (limx) = limy, R′(x,y) as being T (limx) = lim〈f (yn)〉n∈N,

and the function d : A→A such that, for each x ∈A, d(x) = 〈T (xn)〉n∈N.

In [Sha16, p. 31–36] it is shown that Newton’s Method and the Initial-Value Problem

follow from the Banach Fixed Point Theorem.
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7
Conclusions and Future Work

7.1 Conclusions

The main objective of the present work was to study diagonalization in a formal

system with a view towards a general theory of diagonalization that can be applied to

everyday Mathematics. We started to study in detail the Diagonalization Lemma in

Chapter 2, then we moved to argue that Yablo’s Paradox is self-referential in Chapter 3.

After that, in Chapter 4, we presented a common origin of several paradoxes and Löb’s

Theorem; furthermore, we presented a general approach to paradoxes. In Chapter 5 we

presented a general theory of diagonalization. Finally, several Mathematical examples

were studied in Chapter 6 using the theory presented in Chapter 5.

The Diagonalization Lemma, as studied in Chapter 2, gives rise to self-referential

sentences, a concept that was generalised to the notion of a general formula. We argued

that very natural properties related to self-reference are not decidable in a theory of Arith-

metic (a consistent primitively recursive axiomatised extension of PA). For example, if

σ (x) is a predicate that identifies all self-referential formulas in T (a theory of Arithmetic),

then σ (x)∧PT(x) is not decidable: using theory T we cannot decide which sentences are

both self-referential and provable (see Theorem 2.1.2). This might seem to be an expected

and intuitive result when one has in mind that in a theory of Arithmetic there are always

incompleteness phenomena, nevertheless it is always important to provide an argument

or a proof to such claims — just like was done in Chapter 2.

Besides the Diagonalization Lemma — that states the diagonalization of a formula and

that is deeply related with self-reference — , in Chapter 2 we also presented the Strong

Diagonalization Lemma — that is similar to the former result but states a diagonalization

at the level of terms. It is a well-known fact that from the Strong Diagonalization Lemma

one can prove the Diagonalization Lemma. Despite that fact, we were able to prove that
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the conserve does not hold — Corollary 2.2.1 — by firstly proving that the Diagonalization

Lemma cannot prove itself — Theorem 2.2.1. This last result is an explicite example of

a situation where the Logicism program fails: the diagonalization of terms — formal

Arithmetic — cannot be reduced to the diagonalization of formulas — pure Logic.

In Chapter 3 we presented Yablo’s Paradox and a minimal theory that does not require

any arithmetical fact to express that contradiction, theory Y (see Definition 3.1.2, The-

orem 3.1.1, and Theorem 3.1.2). Inspired by theory Y, we introduced Linear Temporal

Logic (LTL) and the main concepts needed to study Yablo’s Paradox. From that, we argued

that a formulation of Yablo’s Paradox in LTL — (TY)— was sound and captured the main

features of the paradox. Finally, we argued that our formulation of Yablo’s Paradox in LTL

is self-referential.

Paradoxes and Löb’s Theorem were the main focus of Chapter 4. We started by present-

ing a result by Smullyan — Theorem R — that was confirmed to be responsible for all the

diagonalization phenomena presented in the considered chapter. After that, we exhibit

several paradoxes (the Liar, Russell’s Paradox, and Curry’s Paradox) and also Löb’s Theo-

rem. From that point, all the technical apparatus was introduced as well as the systems

that generalize the considered paradoxes and theorem: Curry Systems (see Definition

4.4.1). Not only the layout of Curry’s Paradox was preserved in Curry Systems, but also

the fact that one very specific formula could be deduced was preserved — Theorem 4.4.

In order to show that Löb’s Theorem is a particular case of a Curry System, the notion

of Löb System (Definition 4.4.2) was introduced. To fulfil the mentioned goal, we proved

that every Löb System is a Curry System — Theorem 4.4.1 — and that Löb’s Theorem

holds in every Löb System — Löb Theorem. Then, a general system to study paradoxes

was introduced — Definition 4.5.1. To show that in some situations consistency was

preserved, it was introduced a notion of model of a Curry System (and of a Löb System)

— Definition 4.6.1 — and a consistency result was proved — Consistency Theorem.

In Chapter 5 was introduced a general theory of diagonalization — diagonal theory

(see Definition 5.0.2). It was proved that in a diagonal theory one of the formulas can

be diagonalised — General Diagonalization Theorem. We ended Chapter 4 with several

structural results (in the sense that they are not in a formal language but rather in a

everyday Mathematics fashion) that follow from the General Diagonalization Theorem

and that were used to study several Mathematical examples.

Finally, in Chapter 6 several examples from Mathematics were studied and traced

back to the General Diagonalization Theorem: 1.1.Theorem from [Law69], two results

from [YM03], the Knaster-Tarski Theorem, the Banach Mapping Theorem, the Schröder-

Bernstein Theorem, and a General Fixed Point Theorem responsible for the Fixed Point

Lemma for Normal Functions and for the Banach Fixed Point Theorem (that by its turn

is responsible for Newton’s Method and the Initial-Value Problem).
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7.2 Future Work

Several lines of investigation could be followed having as a starting point the current

thesis. Regarding self-reference and what was developed in Chapter 2, one very natu-

ral question is “What is the correct way to formulate self-reference?”; a model-theoretic

approach could be considered or even different formal systems. It can be the case that

partial notions of self-reference could be totally studied in specific formal systems. An-

other interesting topic of investigation is the study of other paradoxes using Definition

4.5.1. Finally, other examples of diagonalization in Mathematics could be studied (for

example results from Topology that were not considered in the present thesis due to their

high complexity to be clearly stated).
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