51,885 research outputs found
Cosmographic constraints on a class of Palatini f(R) gravity
Modified gravity, known as gravity, has presently been applied to
Cosmology as a realistic alternative to dark energy. For this kind of gravity
the expansion of the Universe may accelerate while containing only baryonic and
cold dark matter. The aim of the present investigation is to place cosmographic
constraints on the class of theories of the form within
the Palatini approach. Although extensively discussed in recent literature and
confronted with several observational data sets, cosmological tests are indeed
inconclusive about the true signal of in this class of theories. This is
particularly important to define which kind of corrections (infra-red or
high-energy) to general relativity this class of theory indeed represent. We
shed some light on this question by examining the evolution of the deceleration
parameter for these theories. We find that for a large range of
, models based on gravity in the Palatini
approach can only have positive values for , placing thus a broad
restriction on this class of gravity.Comment: 4 pages, 2 figures, Latex, Submitte
Elodie metallicity-biased search for transiting Hot Jupiters I. Two Hot Jupiters orbiting the slightly evolved stars HD118203 and HD149143
We report the discovery of a new planet candidate orbiting the subgiant star
HD118203 with a period of P=6.1335 days. The best Keplerian solution yields an
eccentricity e=0.31 and a minimum mass m2sin(i)=2.1MJup for the planet. This
star has been observed with the ELODIE fiber-fed spectrograph as one of the
targets in our planet-search programme biased toward high-metallicity stars,
on-going since March 2004 at the Haute-Provence Observatory. An analysis of the
spectroscopic line profiles using line bisectors revealed no correlation
between the radial velocities and the line-bisector orientations, indicating
that the periodic radial-velocity signal is best explained by the presence of a
planet-mass companion. A linear trend is observed in the residuals around the
orbital solution that could be explained by the presence of a second companion
in a longer-period orbit. We also present here our orbital solution for another
slightly evolved star in our metal-rich sample, HD149143, recently proposed to
host a 4-d period Hot Jupiter by the N2K consortium. Our solution yields a
period P=4.09 days, a marginally significant eccentricity e=0.08 and a
planetary minimum mass of 1.36MJup. We checked that the shape of the spectral
lines does not vary for this star as well.Comment: Accepted in A&A (6 pages, 6 figures
On the functional form of the metallicity-giant planet correlation
It is generally accepted that the presence of a giant planet is strongly
dependent on the stellar metallicity. A stellar mass dependence has also been
investigated, but this dependence does not seem as strong as the metallicity
dependence. Even for metallicity, however, the exact form of the correlation
has not been established. In this paper, we test several scenarios for
describing the frequency of giant planets as a function of its host parameters.
We perform this test on two volume-limited samples (from CORALIE and HARPS). By
using a Bayesian analysis, we quantitatively compared the different scenarios.
We confirm that giant planet frequency is indeed a function of metallicity.
However, there is no statistical difference between a constant or an
exponential function for stars with subsolar metallicities contrary to what has
been previously stated in the literature. The dependence on stellar mass could
neither be confirmed nor be discarded.Comment: 5 pages, 2 figures, accepted in A&
On the 2:1 Orbital Resonance in the HD 82943 Planetary System
We present an analysis of the HD 82943 planetary system based on a radial
velocity data set that combines new measurements obtained with the Keck
telescope and the CORALIE measurements published in graphical form. We examine
simultaneously the goodness of fit and the dynamical properties of the best-fit
double-Keplerian model as a function of the poorly constrained eccentricity and
argument of periapse of the outer planet's orbit. The fit with the minimum
chi_{nu}^2 is dynamically unstable if the orbits are assumed to be coplanar.
However, the minimum is relatively shallow, and there is a wide range of fits
outside the minimum with reasonable chi_{nu}^2. For an assumed coplanar
inclination i = 30 deg. (sin i = 0.5), only good fits with both of the lowest
order, eccentricity-type mean-motion resonance variables at the 2:1
commensurability, theta_1 and theta_2, librating about 0 deg. are stable. For
sin i = 1, there are also some good fits with only theta_1 (involving the inner
planet's periapse longitude) librating that are stable for at least 10^8 years.
The libration semiamplitudes are about 6 deg. for theta_1 and 10 deg. for
theta_2 for the stable good fit with the smallest libration amplitudes of both
theta_1 and theta_2. We do not find any good fits that are non-resonant and
stable. Thus the two planets in the HD 82943 system are almost certainly in 2:1
mean-motion resonance, with at least theta_1 librating, and the observations
may even be consistent with small-amplitude librations of both theta_1 and
theta_2.Comment: 24 pages, including 10 figures; accepted for publication in Ap
Detecting transit signatures of exoplanetary rings using SOAP3.0
CONTEXT. It is theoretically possible for rings to have formed around
extrasolar planets in a similar way to that in which they formed around the
giant planets in our solar system. However, no such rings have been detected to
date.
AIMS: We aim to test the possibility of detecting rings around exoplanets by
investigating the photometric and spectroscopic ring signatures in
high-precision transit signals.
METHODS: The photometric and spectroscopic transit signals of a ringed planet
is expected to show deviations from that of a spherical planet. We used these
deviations to quantify the detectability of rings. We present SOAP3.0 which is
a numerical tool to simulate ringed planet transits and measure ring
detectability based on amplitudes of the residuals between the ringed planet
signal and best fit ringless model.
RESULTS: We find that it is possible to detect the photometric and
spectroscopic signature of near edge-on rings especially around planets with
high impact parameter. Time resolution 7 mins is required for the
photometric detection, while 15 mins is sufficient for the spectroscopic
detection. We also show that future instruments like CHEOPS and ESPRESSO, with
precisions that allow ring signatures to be well above their noise-level,
present good prospects for detecting rings.Comment: 13 pages, 16 figures, 2 tables , accepted for publication in A&
- …