4,324 research outputs found

    Lunar impact flashes from Geminids, analysis of luminous efficiencies and the flux of large meteoroids on Earth

    Get PDF
    We analyze lunar impact flashes recorded by our team during runs in December 2007, 2011, 2013 and 2014. In total, 12 impact flashes with magnitudes ranging between 7.1 and 9.3 in V band were identified. From these, 9 events could be linked to the Geminid stream. Using these observations the ratio of luminous energy emitted in the flashes with respect to the kinetic energy of the impactors for meteoroids of the Geminid stream is estimated. By making use of the known Geminids meteoroid flux on Earth we found this ratio to be 2.1x103^{-3} on average. We compare this luminous efficiency with other estimations derived in the past for other meteoroid streams and also compare it with other estimations that we present here for the first time by making use of crater diameter measurements. We think that the luminous efficiency has to be revised downward, not upward, at least for sporadic impacts. This implies an increase in the influx of kilogram-sized and larger bodies on Earth that has been derived thus far through the lunar impact flash monitoring technique

    A "diamond-ring" star: the unusual morphologic structure of a young (multiple?) object

    Full text link
    We have observed IRAS06468-0325 obtaining optical and infrared images through IJHKs and L' filters, K-band low-resolution spectroscopy, together with millimetre line observations of CO and CS. IRAS06468-0325 has a very unusual and enigmatic morphology with two components: a bright, close to point-like source (the diamond) and a sharp-edge ring-like structure (the ring). The source is not detected in the optical, at wavelengths shorter than the I-band. The diamond is seen in all the imaging bands observed. The ring-like structure in IRAS06468-0325 is clearly seen in the I, J, H, and Ks. It is not detected in the L'-band image. Infrared colours of the diamond are compatible with excess circumstellar emission and a young stellar nature. A strongly non-gaussian and moderately bright CO(1-0) and {13}CO(2-1) lines are seen towards IRAS06468-0325, at v_{LSR} of 30.5 km s{-1} (corresponding to a kinematic distance of 3 kpc). Very weak C{18}O(2-1) and CS(2-1) lines were detected. K-band spectra of the diamond and of the ring are similar both in the slope of the continuum and in the presence of lines supporting the idea that the ring is reflected light from the diamond. With the current data, a few different scenarios are possible to explain the morphology of this object. However, the available data seem to favour that the morphology of IRAS06468-0325 correspond to a young stellar multiple system in a transient stage where a binary co-exists with a circumbinary disc, similar to the case of GG Tau. In this case, the sharpness of the well-defined ring may be due to tidal truncation from dynamic interactions between components in a binary or multiple stellar system. IRAS06468-0325 may be an important rare case that illustrates a short-lived stage of the process of binary or multiple star formation.Comment: 7 pages, 6 figure

    Quantiles for Fractions and Other Mixed Data

    Get PDF
    This paper studies the estimation of quantile regression for fractional data, focusing on the case where there are mass-points at zero or/and one. More generally, we propose a simple strategy for the estimation of the conditional quantiles of data from mixed distributions, which combines standard results on the estimation of censored and Box-Cox quantile regressions. The implementation of the proposed method is illustrated using a well-known dataset.

    S-Duality, SL(2,Z) Multiplets and Killing Spinors

    Get PDF
    The S-duality transformations in type IIB string theory can be seen as local U(1) transformations in type IIB supergravity. We use this approach to construct the SL(2,Z)SL(2,Z) multiplets associated to supersymmetric backgrounds of type IIB string theory and the transformation laws of their corresponding Killing spinors.Comment: 13 pages, Harvma

    Fracture-induced anisotropic attenuation

    Get PDF
    The triaxial nature of the tectonic stress in the earth's crust favors the appearance of vertical fractures. The resulting rheology is usually effective anisotropy with orthorhombic and monoclinic symmetries. In addition, the presence of fluids leads to azimuthally varying attenuation of seismic waves. A dense set of fractures embedded in a background medium enhances anisotropy and rock compliance. Fractures are modeled as boundary discontinuities in the displacement u and particle velocity v as [ κ · u + ν · v] where the brackets denote discontinuities across the fracture surface, j is a fracture stiffness, and g is a viscosity related to the energy loss. We consider a transversely isotropic background medium (e.g., thin horizontal plane layers), with sets of long vertical fractures. Schoenberg and Muir's theory combines the background medium and sets of vertical fractures to provide the 13 complex stiffnesses of the long-wavelength equivalent monoclinic and viscoelastic medium. Long-wavelength equivalent means that the dominant wavelength of the signal is much longer than the fracture spacing. The symmetry plane is the horizontal plane. The equations for orthorhombic and transversely isotropic media follow as particular cases. We compute the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts), and quality factors. The effective medium ranges from monoclinic symmetry to hexagonal (transversely isotropic) symmetry from the low-to the high-frequency limits in the case of a particle-velocity discontinuity (lossy case) and the attenuation shows typical Zener relaxation peaks as a function of frequency. The attenuation of the coupled waves may show important differences when computed versus the ray or phase angles, with triplication appearing in the Q factor of the qS wave. We have performed a full-wave simulation to compute the field corresponding to the coupled qP-qS waves in the symmetry plane of an effective monoclinic medium. The simulations agree with the predictions of the plane-wave analysis.Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Itali

    J-PLUS : the Javalambre Photometric Local Universe Survey

    Get PDF
    The Javalambre Photometric Local Universe Survey (J-PLUS ) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg2 mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500–10 000 Å). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700–4000 Å Balmer break region, Hδ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB ∼21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo-z estimates (at the δ z/(1 + z)∼0.005–0.03 precision level) for moderately bright (up to r ∼ 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([OII]/λ3727, Hα/λ6563) up to z <  0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first ∼1000 deg2 of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r <  21 mag. With a goal of 8500 deg2 for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey
    corecore