45,893 research outputs found
A rare and threatening complication in a cirrhotic patient
info:eu-repo/semantics/publishedVersio
DSMC evaluation of the Navier-Stokes shear viscosity of a granular fluid
A method based on the simple shear flow modified by the introduction of a
deterministic non-conservative force and a stochastic process is proposed to
measure the Navier-Stokes shear viscosity in a granular fluid described by the
Enskog equation. The method is implemented in DSMC simulations for a wide range
of values of dissipation and density. It is observed that, after a certain
transient period, the system reaches a hydrodynamic stage which tends to the
Navier-Stokes regime for long times. The results are compared with theoretical
predictions obtained from the Chapman-Enskog method in the leading Sonine
approximation, showing quite a good agreement, even for strong dissipation.Comment: 6 pages, 4 figures; to appear in Rarefied Gas Dynamics: 24th
International Symposium (AIP Conference Proceedings
Is CDM an effective CCDM cosmology?
We show that a cosmology driven by gravitationally induced particle
production of all non-relativistic species existing in the present Universe
mimics exactly the observed flat accelerating CDM cosmology with just
one dynamical free parameter. This kind of scenario includes the creation cold
dark matter (CCDM) model [Lima, Jesus & Oliveira, JCAP 011(2010)027] as a
particular case and also provides a natural reduction of the dark sector since
the vacuum component is not needed to accelerate the Universe. The new cosmic
scenario is equivalent to CDM both at the background and perturbative
levels and the associated creation process is also in agreement with the
universality of the gravitational interaction and equivalence principle.
Implicitly, it also suggests that the present day astronomical observations
cannot be considered the ultimate proof of cosmic vacuum effects in the evolved
Universe because CDM may be only an effective cosmology.Comment: 6 pages, 2 figures, changes in the abstract, introduction, new
references and typo correction
Nonlinear viscosity and velocity distribution function in a simple longitudinal flow
A compressible flow characterized by a velocity field is
analyzed by means of the Boltzmann equation and the Bhatnagar-Gross-Krook
kinetic model. The sign of the control parameter (the longitudinal deformation
rate ) distinguishes between an expansion () and a condensation ()
phenomenon. The temperature is a decreasing function of time in the former
case, while it is an increasing function in the latter. The non-Newtonian
behavior of the gas is described by a dimensionless nonlinear viscosity
, that depends on the dimensionless longitudinal rate . The
Chapman-Enskog expansion of in powers of is seen to be only
asymptotic (except in the case of Maxwell molecules). The velocity distribution
function is also studied. At any value of , it exhibits an algebraic
high-velocity tail that is responsible for the divergence of velocity moments.
For sufficiently negative , moments of degree four and higher may diverge,
while for positive the divergence occurs in moments of degree equal to or
larger than eight.Comment: 18 pages (Revtex), including 5 figures (eps). Analysis of the heat
flux plus other minor changes added. Revised version accepted for publication
in PR
Studying light propagation in a locally homogeneous universe through an extended Dyer-Roeder approach
Light is affected by local inhomogeneities in its propagation, which may
alter distances and so cosmological parameter estimation. In the era of
precision cosmology, the presence of inhomogeneities may induce systematic
errors if not properly accounted. In this vein, a new interpretation of the
conventional Dyer-Roeder (DR) approach by allowing light received from distant
sources to travel in regions denser than average is proposed. It is argued that
the existence of a distribution of small and moderate cosmic voids (or "black
regions") implies that its matter content was redistributed to the homogeneous
and clustered matter components with the former becoming denser than the cosmic
average in the absence of voids. Phenomenologically, this means that the DR
smoothness parameter (denoted here by ) can be greater than unity,
and, therefore, all previous analyses constraining it should be rediscussed
with a free upper limit. Accordingly, by performing a statistical analysis
involving 557 type Ia supernovae (SNe Ia) from Union2 compilation data in a
flat CDM model we obtain for the extended parameter,
(). The effects of are also
analyzed for generic CDM models and flat XCDM cosmologies. For both
models, we find that a value of greater than unity is able to
harmonize SNe Ia and cosmic microwave background observations thereby
alleviating the well-known tension between low and high redshift data. Finally,
a simple toy model based on the existence of cosmic voids is proposed in order
to justify why can be greater than unity as required by supernovae
data.Comment: 5 pages, 2 figures. Title modified, results unchanged. It matches
version published as a Brief Report in Phys. Rev.
Gravitational waves in the generalized Chaplygin gas model
The consequences of taking the generalized Chaplygin gas as the dark energy
constituent of the Universe on the gravitational waves are studied and the
spectrum obtained from this model, for the flat case, is analyzed. Besides its
importance for the study of the primordial Universe, the gravitational waves
represent an additional perspective (besides the CMB temperature and
polarization anisotropies) to evaluate the consistence of the different dark
energy models and establish better constraints to their parameters. The
analysis presented here takes this fact into consideration to open one more
perspective of verification of the generalized Chapligin gas model
applicability. Nine particular cases are compared: one where no dark energy is
present; two that simulate the -CDM model; two where the gas acts like
the traditional Chaplygin gas; and four where the dark energy is the
generalized Chaplygin gas. The different spectra permit to distinguish the
-CDM and the Chaplygin gas scenarios.Comment: Latex file, 9 pages, 11 figures eps forma
osp(1|2) Conformal Field Theory
We review some results recently obtained for the conformal field theories
based on the affine Lie superalgebra osp(1|2). In particular, we study the
representation theory of the osp(1|2) current algebras and their character
formulas. By means of a free field representation of the conformal blocks, we
obtain the structure constants and the fusion rules of the model. (Lecture
delivered at the CERN-Santiago de Compostela-La Plata Meeting, "Trends in
Theoretical Physics", La Plata, Argentina, April-May 1997).Comment: 16 pages, 1 figure, LaTe
- …