32 research outputs found

    Inhibition of αvβ3 integrin induces loss of cell directionality of oral squamous carcinoma cells (OSCC)

    Get PDF
    The connective tissue formed by extracellular matrix (ECM) rich in fibronectin and collagen consists a barrier that cancer cells have to overpass to reach blood vessels and then a metastatic site. Cell adhesion to fibronectin is mediated by αvβ3 and α5β1 integrins through an RGD motif present in this ECM protein, thus making these receptors key targets for cell migration studies. Here we investigated the effect of an RGD disintegrin, DisBa-01, on the migration of human fibroblasts (BJ) and oral squamous cancer cells (OSCC, SCC25) on a fibronectin-rich environment. Time-lapse images were acquired on fibronectin-coated glassbottomed dishes. Migration speed and directionality analysis indicated that OSCC cells, but not fibroblasts, showed significant decrease in both parameters in the presence of DisBa-01 (1μM and 2μM). Integrin expression levels of the α5, αv and β3 subunits were similar in both cell lines, while β1 subunit is present in lower levels on the cancer cells. Next, we examined whether the effects of DisBa-01 were related to changes in adhesion properties by using paxillin immunostaining and total internal reflection fluorescence TIRF microscopy. OSCCs in the presence of DisBa-01 showed increased adhesion sizes and number of maturing adhesion. The same parameters were analyzed usingβ3-GFP overexpressing cells and showed that β3 overexpression restored cell migration velocity and the number of maturing adhesion that were altered by DisBa-01. Surface plasmon resonance analysis showed that DisBa-01 has 100x higher affinity for αvβ3 integrin than forα5β1 integrin. In conclusion, our results suggest that the αvβ3 integrin is the main receptor involved in cell directionality and its blockage may be an interesting alternative against metastasis

    Genome comparison between clinical and environmental strains of Herbaspirillum seropedicae reveals a potential new emerging bacterium adapted to human hosts

    Full text link
    Abstract Background Herbaspirillum seropedicae is an environmental β-proteobacterium that is capable of promoting the growth of economically relevant plants through biological nitrogen fixation and phytohormone production. However, strains of H. seropedicae have been isolated from immunocompromised patients and associated with human infections and deaths. In this work, we sequenced the genomes of two clinical strains of H. seropedicae, AU14040 and AU13965, and compared them with the genomes of strains described as having an environmental origin. Results Both genomes were closed, indicating a single circular chromosome; however, strain AU13965 also carried a plasmid of 42,977 bp, the first described in the genus Herbaspirillum. Genome comparison revealed that the clinical strains lost the gene sets related to biological nitrogen fixation (nif) and the type 3 secretion system (T3SS), which has been described to be essential for interactions with plants. Comparison of the pan-genomes of clinical and environmental strains revealed different sets of accessorial genes. However, antimicrobial resistance genes were found in the same proportion in all analyzed genomes. The clinical strains also acquired new genes and genomic islands that may be related to host interactions. Among the acquired islands was a cluster of genes related to lipopolysaccharide (LPS) biosynthesis. Although highly conserved in environmental strains, the LPS biosynthesis genes in the two clinical strains presented unique and non-orthologous genes within the genus Herbaspirillum. Furthermore, the AU14040 strain cluster contained the neuABC genes, which are responsible for sialic acid (Neu5Ac) biosynthesis, indicating that this bacterium could add it to its lipopolysaccharide. The Neu5Ac-linked LPS could increase the bacterial resilience in the host aiding in the evasion of the immune system. Conclusions Our findings suggest that the lifestyle transition from environment to opportunist led to the loss and acquisition of specific genes allowing adaptations to colonize and survive in new hosts. It is possible that these substitutions may be the starting point for interactions with new hosts.https://deepblue.lib.umich.edu/bitstream/2027.42/152201/1/12864_2019_Article_5982.pd

    Incorporating biodiversity responses to land use change scenarios for preventing emerging zoonotic diseases in areas of unknown host-pathogen interactions

    Get PDF
    The need to reconcile food production, the safeguarding of nature, and the protection of public health is imperative in a world of continuing global change, particularly in the context of risks of emerging zoonotic disease (EZD). In this paper, we explored potential land use strategies to reduce EZD risks using a landscape approach. We focused on strategies for cases where the dynamics of pathogen transmission among species were poorly known and the ideas of “land-use induced spillover” and “landscape immunity” could be used very broadly. We first modeled three different land-use change scenarios in a region of transition between the Cerrado and the Atlantic Forest biodiversity hotspots. The land-use strategies used to build our scenarios reflected different proportions of native vegetation cover, as a proxy of habitat availability. We then evaluated the effects of the proportion of native vegetation cover on the occupancy probability of a group of mammal species and analyzed how the different land-use scenarios might affect the distribution of species in the landscape and thus the risk of EZD. We demonstrate that these approaches can help identify potential future EZD risks, and can thus be used as decision-making tools by stakeholders, with direct implications for improving both environmental and socio-economic outcomes

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Incorporating biodiversity responses to land use change scenarios for preventing emerging zoonotic diseases in areas of unknown host-pathogen interactions

    No full text
    The need to reconcile food production, the safeguarding of nature, and the protection of public health is imperative in a world of continuing global change, particularly in the context of risks of emerging zoonotic disease (EZD). In this paper, we explored potential land use strategies to reduce EZD risks using a landscape approach. We focused on strategies for cases where the dynamics of pathogen transmission among species were poorly known and the ideas of “land-use induced spillover” and “landscape immunity” could be used very broadly. We first modeled three different land-use change scenarios in a region of transition between the Cerrado and the Atlantic Forest biodiversity hotspots. The land-use strategies used to build our scenarios reflected different proportions of native vegetation cover, as a proxy of habitat availability. We then evaluated the effects of the proportion of native vegetation cover on the occupancy probability of a group of mammal species and analyzed how the different land-use scenarios might affect the distribution of species in the landscape and thus the risk of EZD. We demonstrate that these approaches can help identify potential future EZD risks, and can thus be used as decision-making tools by stakeholders, with direct implications for improving both environmental and socio-economic outcomes

    Active Distribution Networks with Microgrid and Distributed Energy Resources Optimization Using Hierarchical Model

    No full text
    Distribution networks have undergone a series of changes, with the insertion of distributed energy resources, such as distributed generation, energy storage systems, and demand response, allowing the consumers to produce energy and have an active role in distribution systems. Thus, it is possible to form microgrids. From the active grid’s point of view, it is necessary to plan the operation considering the distributed resources and the microgrids connected to it, aiming to ensure the maintenance of grid economy and operational safety. So, this paper presents the proposition of a hierarchical model for planning the daily operation of active distribution grids with microgrids. In this case, the entire grid operation is optimized considering the results from the microgrid optimization itself. If none of the technical constraints, for example voltage levels, are reached, the grid is optimized, however, if there are some violations in the constraints feedback is sent to the internal microgrid optimization to be run again. Several scenarios are evaluated to verify the iteration among the controls in a coordinated way allowing the optimization of the operation of microgrids, as well as of the distribution network. A coordinated and hierarchical operation of active distribution networks with microgrids, specifically when they have distributed energy resources allocated and operated in an optimized way, results in a reduction in operating costs, losses, and greater flexibility and security of the whole system

    Active Distribution Networks with Microgrid and Distributed Energy Resources Optimization Using Hierarchical Model

    No full text
    Distribution networks have undergone a series of changes, with the insertion of distributed energy resources, such as distributed generation, energy storage systems, and demand response, allowing the consumers to produce energy and have an active role in distribution systems. Thus, it is possible to form microgrids. From the active grid’s point of view, it is necessary to plan the operation considering the distributed resources and the microgrids connected to it, aiming to ensure the maintenance of grid economy and operational safety. So, this paper presents the proposition of a hierarchical model for planning the daily operation of active distribution grids with microgrids. In this case, the entire grid operation is optimized considering the results from the microgrid optimization itself. If none of the technical constraints, for example voltage levels, are reached, the grid is optimized, however, if there are some violations in the constraints feedback is sent to the internal microgrid optimization to be run again. Several scenarios are evaluated to verify the iteration among the controls in a coordinated way allowing the optimization of the operation of microgrids, as well as of the distribution network. A coordinated and hierarchical operation of active distribution networks with microgrids, specifically when they have distributed energy resources allocated and operated in an optimized way, results in a reduction in operating costs, losses, and greater flexibility and security of the whole system
    corecore