116 research outputs found

    The equational theory of the natural join and inner union is decidable

    Full text link
    The natural join and the inner union operations combine relations of a database. Tropashko and Spight [24] realized that these two operations are the meet and join operations in a class of lattices, known by now as the relational lattices. They proposed then lattice theory as an algebraic approach to the theory of databases, alternative to the relational algebra. Previous works [17, 22] proved that the quasiequational theory of these lattices-that is, the set of definite Horn sentences valid in all the relational lattices-is undecidable, even when the signature is restricted to the pure lattice signature. We prove here that the equational theory of relational lattices is decidable. That, is we provide an algorithm to decide if two lattice theoretic terms t, s are made equal under all intepretations in some relational lattice. We achieve this goal by showing that if an inclusion t ≤\le s fails in any of these lattices, then it fails in a relational lattice whose size is bound by a triple exponential function of the sizes of t and s.Comment: arXiv admin note: text overlap with arXiv:1607.0298

    A Nice Labelling for Tree-Like Event Structures of Degree 3

    Full text link
    We address the problem of finding nice labellings for event structures of degree 3. We develop a minimum theory by which we prove that the labelling number of an event structure of degree 3 is bounded by a linear function of the height. The main theorem we present in this paper states that event structures of degree 3 whose causality order is a tree have a nice labelling with 3 colors. Finally, we exemplify how to use this theorem to construct upper bounds for the labelling number of other event structures of degree 3

    A Nice Labelling for Tree-Like Event Structures of Degree 3 (Extended Version)

    Get PDF
    We address the problem of finding nice labellings for event structures of degree 3. We develop a minimum theory by which we prove that the labelling number of an event structure of degree 3 is bounded by a linear function of the height. The main theorem we present in this paper states that event structures of degree 3 whose causality order is a tree have a nice labelling with 3 colors. Finally, we exemplify how to use this theorem to construct upper bounds for the labelling number of other event structures of degree 3

    The extended permutohedron on a transitive binary relation

    Full text link
    For a given transitive binary relation e on a set E, the transitive closures of open (i.e., co-transitive in e) sets, called the regular closed subsets, form an ortholattice Reg(e), the extended permutohedron on e. This construction, which contains the poset Clop(e) of all clopen sets, is a common generalization of known notions such as the generalized permutohedron on a partially ordered set on the one hand, and the bipartition lattice on a set on the other hand. We obtain a precise description of the completely join-irreducible (resp., completely meet-irreducible) elements of Reg(e) and the arrow relations between them. In particular, we prove that (1) Reg(e) is the Dedekind-MacNeille completion of the poset Clop(e); (2) Every open subset of e is a set-theoretic union of completely join-irreducible clopen subsets of e; (3) Clop(e) is a lattice iiff every regular closed subset of e is clopen, iff e contains no "square" configuration, iff Reg(e)=Clop(e); (4) If e is finite, then Reg(e) is pseudocomplemented iff it is semidistributive, iff it is a bounded homomorphic image of a free lattice, iff e is a disjoint sum of antisymmetric transitive relations and two-element full relations. We illustrate the strength of our results by proving that, for n greater than or equal to 3, the congruence lattice of the lattice Bip(n) of all bipartitions of an n-element set is obtained by adding a new top element to a Boolean lattice with n2^{n-1} atoms. We also determine the factors of the minimal subdirect decomposition of Bip(n).Comment: 25 page

    The Variable Hierarchy for the Games mu-Calculus

    Full text link
    Parity games are combinatorial representations of closed Boolean mu-terms. By adding to them draw positions, they have been organized by Arnold and one of the authors into a mu-calculus. As done by Berwanger et al. for the propositional modal mu-calculus, it is possible to classify parity games into levels of a hierarchy according to the number of fixed-point variables. We ask whether this hierarchy collapses w.r.t. the standard interpretation of the games mu-calculus into the class of all complete lattices. We answer this question negatively by providing, for each n >= 1, a parity game Gn with these properties: it unravels to a mu-term built up with n fixed-point variables, it is semantically equivalent to no game with strictly less than n-2 fixed-point variables
    • …
    corecore