26 research outputs found

    Kolotl.

    Get PDF
    28 pages : illustrations (some color), map ; 26 cm.The monophyly and phylogenetic position of Diplocentrus Peters, 1861, has remained ambiguous since the first published phylogenetic analysis of diplocentrid relationships, in which it was rendered paraphyletic by the placement of exemplar species from two other diplocentrid genera, Bioculus Stahnke, 1968, and Didymocentrus Kraepelin, 1905. The discovery of two diplocentrids with neobothriotaxic pedipalps, Diplocentrus magnus Beutelspacher and LĂłpez-Forment, 1991, and Diplocentrus poncei Francke and Quijano-Ravell, 2009, from the central Mexican states of Guerrero and MichoacĂĄn, respectively, raised further questions about the limits of Diplocentrus. A recent phylogenetic analysis of 29 species of Diplocentrus and five exemplar species of the most closely related genera, based on 95 morphological characters and 4202 aligned nucleotides from DNA sequences of five markers in the nuclear and mitochondrial genomes, recovered the monophyly of Diplocentrus, excepting two neobothriotaxic species from central Mexico, justifying their removal from Diplocentrus. In the present contribution, Kolotl, n. gen. is created to accommodate the two species, Kolotl magnus (Beutelspacher and LĂłpez-Forment, 1991), n. comb., and Kolotl poncei (Francke and Quijano-Ravell, 2009), n. comb., and both are redescribed

    Integration of phylogenomics and molecular modeling reveals lineage-specific diversification of toxins in scorpions

    Get PDF
    Scorpions have evolved a variety of toxins with a plethora of biological targets, but characterizing their evolution has been limited by the lack of a comprehensive phylogenetic hypothesis of scorpion relationships grounded in modern, genome-scale datasets. Disagreements over scorpion higher-level systematics have also incurred challenges to previous interpretations of venom families as ancestral or derived. To redress these gaps, we assessed the phylogenomic relationships of scorpions using the most comprehensive taxonomic sampling to date. We surveyed genomic resources for the incidence of calcins (a type of calcium channel toxin), which were previously known only from 16 scorpion species. Here, we show that calcins are diverse, but phylogenetically restricted only to parvorder Iurida, one of the two basal branches of scorpions. The other branch of scorpions, Buthida, bear the related LKTx toxins (absent in Iurida), but lack calcins entirely. Analysis of sequences and molecular models demonstrates remarkable phylogenetic inertia within both calcins and LKTx genes. These results provide the first synapomorphies (shared derived traits) for the recently redefined clades Buthida and Iurida, constituting the only known case of such traits defined from the morphology of molecules

    VIII Encuentro de Docentes e Investigadores en Historia del Diseño, la Arquitectura y la Ciudad

    Get PDF
    Acta de congresoLa conmemoraciĂłn de los cien años de la Reforma Universitaria de 1918 se presentĂł como una ocasiĂłn propicia para debatir el rol de la historia, la teorĂ­a y la crĂ­tica en la formaciĂłn y en la prĂĄctica profesional de diseñadores, arquitectos y urbanistas. En ese marco el VIII Encuentro de Docentes e Investigadores en Historia del Diseño, la Arquitectura y la Ciudad constituyĂł un espacio de intercambio y reflexiĂłn cuya realizaciĂłn ha sido posible gracias a la colaboraciĂłn entre Facultades de Arquitectura, Urbanismo y Diseño de la Universidad Nacional y la Facultad de Arquitectura de la Universidad CatĂłlica de CĂłrdoba, contando ademĂĄs con la activa participaciĂłn de mayorĂ­a de las Facultades, Centros e Institutos de Historia de la Arquitectura del paĂ­s y la regiĂłn. Orientado en su convocatoria tanto a docentes como a estudiantes de Arquitectura y Diseño Industrial de todos los niveles de la FAUD-UNC promoviĂł el debate de ideas a partir de experiencias concretas en instancias tales como mesas temĂĄticas de carĂĄcter interdisciplinario, que adoptaron la modalidad de presentaciĂłn de ponencias, entre otras actividades. En el ĂĄmbito de VIII Encuentro, desarrollado en la sede Ciudad Universitaria de CĂłrdoba, se desplegaron numerosas posiciones sobre la enseñanza, la investigaciĂłn y la formaciĂłn en historia, teorĂ­a y crĂ­tica del diseño, la arquitectura y la ciudad; sumĂĄndose el aporte realizado a travĂ©s de sus respectivas conferencias de Ana Clarisa AgĂŒero, Bibiana Cicutti, Fernando Aliata y Alberto Petrina. El conjunto de ponencias que se publican en este Repositorio de la UNC son el resultado de dos intensas jornadas de exposiciones, cuyos contenidos han posibilitado actualizar viejos dilemas y promover nuevos debates. El evento recibiĂł el apoyo de las autoridades de la FAUD-UNC, en especial de la SecretarĂ­a de InvestigaciĂłn y de la Biblioteca de nuestra casa, como asĂ­ tambiĂ©n de la Facultad de Arquitectura de la UCC; va para todos ellos un especial agradecimiento

    Transcriptomic Analysis of Pseudoscorpion Venom Reveals a Unique Cocktail Dominated by Enzymes and Protease Inhibitors

    No full text
    Transcriptomic and genomic analyses have illuminated the diversity of venoms in three of the four venomous arachnid orders (scorpions, spiders, and ticks). To date, no venom gland transcriptome analysis has been available for pseudoscorpions, the fourth venomous arachnid lineage. To redress this gap, we sequenced an mRNA library generated from the venom glands of the species Synsphyronus apimelus (Garypidae). High-throughput sequencing by the Illumina protocol, followed by de novo assembly, resulted in a total of 238,331 transcripts. From those, we annotated 131 transcripts, which code for putative peptides/proteins with similar sequences to previously reported venom components available from different arachnid species in protein databases. Transcripts putatively coding for enzymes showed the richest diversity, followed by other venom components such as peptidase inhibitors, cysteine-rich peptides, and thyroglobulin 1-like peptides. Only 11 transcripts were found that code for putatively low molecular mass spider toxins. This study constitutes the first report of the diversity of components within pseudoscorpion venom

    A new species of Centruroides (Scorpiones: Buthidae) from the northern mountain range of Oaxaca, Mexico Una especie nueva de Centruroides (Scorpiones: Buthidae) de la sierra norte de Oaxaca, MĂ©xico

    No full text
    Centruroides serrano sp. nov. from the Sierra Juårez of Oaxaca (Villa Alta District) is described. This is the eleventh species of the genus reported from Oaxaca and the first one reported from this area. It occurs from 500 m to 1 500 m. It is compared to C. baergi Hoffmann, 1932, C. nigrovariatus Pocock, 1898 and C. hoffmanni Armas, 1996 due to its overall similarity. To separate these 4 species, a principal component analysis was conducted. A list of the species of this genus from Oaxaca is provided.Se describe Centruroides serrano sp. nov. de la sierra Juårez de Oaxaca (distrito de Villa Alta). Es la onceava especie del género reportada para Oaxaca y la primera reportada para el årea. Se distribuye en elevaciones desde los 500 a los 1 500 m. Se compara con C. baergi Hoffmann, 1932, C. nigrovariatus Pocock, 1898 y C. hoffmanni Armas, 1996 por su parecido morfológico. Para separar estas 4 especies, se llevó a cabo un anålisis de componentes principales. Finalmente, se incluye una lista de las especies del género presentes en Oaxaca

    Two new species of Centruroides Marx 1890 (Scorpiones: Buthidae) from Oaxaca, Mexico

    No full text
    Santibåñez-López, Carlos E., Contreras-Félix, Gerardo A. (2013): Two new species of Centruroides Marx 1890 (Scorpiones: Buthidae) from Oaxaca, Mexico. Zootaxa 3734 (2): 130-140, DOI: 10.11646/zootaxa.3734.2.

    Diplocentrus bicolor Contreras-Félix & Santibåñez-López, 2011, sp. n.

    No full text
    Diplocentrus bicolor sp. n. (Figures 1–10) Etymology. The specific epithet refers to the contrasting coloration of the darker body with the legs considerably lighter in color; and it is used as a noun in apposition. Types. Jalisco: Municipio Huejuquilla el Alto: El Vallecito 15 km from Huejuquilla el Alto along the road to San Juan Capistrano (N 22 Âș 40.27 ’, W 103 Âș 57.63 ’, 1233 m) 6.vii. 2005. O. Francke, J. Ponce, M. CĂłrdova, A. Jaimes, G. Francke & V. Capovilla. 1 3 (CNAN-T0683). Paratypes: Jalisco: Municipio Huejuquilla el Alto: El Vallecito 15 km from Huejuquilla el Alto along the road to San Juan Capistrano (N 22 Âș 40.27 ’, W 103 Âș 57.63 ’, 1233 m) 6.vii. 2005. O. Francke, J. Ponce, M. CĂłrdova, A. Jaimes, G. Francke & V. Capovilla. 1 3, 2 Æ€ (CNAN-T0684). Jalisco: Municipio Mezquitic: Carretera a Mezquitic between Mezquitic and Ojuelos (N 22 Âș 21.601 ’, W 103 Âș 38.622 ’, 2089 m) 7.vii. 2005. O. Francke, J. Ponce, M. CĂłrdova, A. Jaimes, G. Francke & V. Capovilla. 2 3 (AMNH). Jalisco: Municipio Huejuquilla el Alto: El Vallecito 18 km from Huejuquilla el Alto along road to San Juan Capistrano (N 22 Âș 40.277 ’, W 103 Âș 57.638 ’ 1233 m) 6.vii. 2005.. O. Francke, J. Ponce, M. CĂłrdova, A. Jaimes, G. Francke & V. Capovilla. 1 Æ€ (CNAN-T0684). Other specimens examined: Jalisco: Municipio Huejuquilla el Alto: El Vallecito 15 km from Huejuquilla el alto along the road to San Juan Capistrano (N 22 Âș 40.27 ’, W 103 Âș 57.63 ’, 1233 m) 6.vii. 2005. O. Francke, J. Ponce, M. CĂłrdova, A. Jaimes, G. Francke & V. Capovilla. 4 3 (CNAN- S03083); 3 3 (AMNH). Jalisco: Municipio Mezquitic: Carretera a Mezquitic betwen Mezquitic and Ojuelos (N 22 Âș 21.601 ’, W 103 Âș 38.62 ’ 2089 m) 7.vii. 2005. O. Francke, J. Ponce, M. CĂłrdova, A. Jaimes, G. Francke & V. Capovilla. 4 3 (CNAN-S03049). 3 Æ€ (CNAN-S03050) 5 3 and 4 Æ€ (AMNH). Jalisco: Municipio Mezquitic: 4 km to North from Mezquitic (N 22 Âș 24.732 ’, W 103 Âș 43.222 ’, 1388 m) 7.vii. 2005. O. Francke, J. Ponce, M. CĂłrdova, A. Jaimes, G. Francke & V. Capovilla. 2 3 (CNAN-S03084) 1 3 1 Æ€ (AMNH). Zacatecas: Municipio Valparaiso: 4.1 km north from San Juan Capistrano (N 22 Âș 40 ’ 44 ”, W 104 Âș 06’ 22 ”, 1169 m) without date. Unknown colector. 1 3 (CNAN-S03029). Zacatecas: Municipio Valparaiso: Deviation to Los Tanques (N 22 Âș 40 ’ 14 ”, W 104 Âș 02’ 32 ”, 1099 m) 19.ix. 2001. E. Gonzalez. 4 3, 1 Æ€ (CNAN-S03030). Distribution. Known from two localities, 3 km from each other, in northern Jalisco and from another two in southern Zacatecas (Fig. 11). Diagnosis. Adults 60 to 70 mm long. Brownish to dark red, legs pale yellow to cream, contrasting sharply with the rest of the body. Frontal notch in anterior margin of carapace “U” shaped, notch moderately deep shagreened. Pedipalp femur orthobothriotaxic, wider than deep, dorsal surface flat, weakly to sparsely granulose. Pedipalp patella orthobothriotaxic; dorsal external carina weak to moderate, smooth in males; ventral submedian carina weak to faint, smooth. Chela orthobothriotaxic; digital carina strong, smooth ending at the base of the fixed finger in males; dorsal surface slightly reticulate to smooth; pedipalp carination weaker and smoother in females. Telotarsal formula 5–6 / 6–7: 6 / 7: 7 / 8: 7 / 8. Pectinal tooth count on males (n= 29) 17–19 (mode= 18); on females (n= 10) 14– 16 (mode= 15). Diplocentrus bicolor sp. n. is similar to D. poncei Francke & Quijano-Revel, 2009 in overall size; the frontal notch of the carapace is “U” shaped in both species; the femur is wider than deep in both species and the dorsal surface flat, and both are similar in pectinal tooth counts. It is geographically closest westward to D. gertschi from Nayarit (Sissom & Walker, 1992), sharing a similar telotarsal formula (on the last leg 7 / 8), the dorsal surface of pedipalp wider than deep, and the pedipalp patella dorsal external carina weak to moderate and smooth in males; it is also closest geographically to the north and the east to D. zacatecanus Hoffmann, 1932, from Zacatecas, San Luis PotosĂ­, QuerĂ©taro, MichoacĂĄn, Hidalgo, Guanajuato, Estado de MĂ©xico, Durango y Aguascalientes (Ponce-Saavedra et al., 2009) sharing similar femur dorsal surface shape and similar carination development in the pedipalp patella. D. bicolor sp. n. can be clearly distinguished from D. poncei by the orthobothriotaxic condition on the pedipalp patella and chela (D. poncei is neobothriotaxic on both); by a higher telotarsal formula (5 / 7 5 / 7 on the last two legs in D. poncei whereas on D. bicolor sp.n. they are 7 / 8: 7 / 8).Digital carina in the pedipalp chela in males of D. poncei is faint to obsolete whereas in males of D. bicolor sp. n. is strong. The legs of D. poncei do not contrast in color with the rest of the body as in D. bicolor. sp. n. It can be distinguished from D. gertschi by its higher pectinal tooth count in males (17 to 19 vs 13 to 15 in D. gertschi). The frontal notch of the carapace in D. gertschi is “V” shaped whereas in D. bicolor sp. n. is “U” shaped. Surfaces on the pedipalp patella of D. gertschi are finely granular and punctate (this condition is present in the species of the genus Didymocentrus, some species of the genus Bioculus and has been reported only in another three species in the genus Diplocentrus, Sissom & Walker, 1992; Armas & MartĂ­n-FrĂ­as, 2004; Armas et al., 2004; Santibañez-LĂłpez, pers. obs.) whereas in D. bicolor sp. n. they are shagreened to granular, without punctation; and D. gertschi (adults: 45 to 52 mm) is smaller than D. bicolor sp. n. It can be distinguished from D. zacatecanus by a higher telotarsal formula (7 / 8 7 / 8 on the last two legs, whereas on D. zacatecanus they are 6 / 7 7 / 7), and a higher pectinal tooth count in males (17 to 19 with a mode of 18, whereas on D. zacatecanus, it is 12 to 16 with a mode of 13), and in females (15 to 16, with a mode of 14 whereas on D. zacatecanus, it is 8–14 with a mode of 11 to 12). The frontal notch of the carapace in D. zacatecanus is “V” shaped whereas in D. bicolor sp. n. is “U” shaped. Description of the holotype male (Figs. 1–2): Prosoma. Carapace reddish brown to dark red, shagreened to sparsely and minutely granular. Frontal notch of carapace “U” shaped, deep, slightly granular and setose; three pairs of lateral eyes subequal in size (Fig. 3). Carapace smooth to minutely granular. Mesosoma. Tergites reddish brown with fusco-piceus pattern (Darker in female). Tergites I–VI surface shagreened to weakly granular towards anterior margin. Tergite VII shagreened towards the anterior margin and minutely granular towards the posterior margin. Tergite VII presents weak lateral carinae. Pectinal tooth count 17 – 16 (female with 14–15). Metasoma. Dark red to reddish brown. Ventral submedian carinae: weak, slightly crenulate on segments I–II; weak to vestigial on segments III–IV. Ventral lateral carinae: strong, smooth and pale on segments I–II; strong, granular and darker on segments III–IV. Lateral inframedian carinae: with a few big conical granules on segments I–II; weak to vestigial on segments III–IV. Lateral supramedian carinae: strong, smooth on segment I; moderate, granular on segments II–IV. Dorsolateral carinae: strong, crenulate on segments I–IV. Segment V slightly longer than pedipalp femur or patella (ratio: 0.97); ventral median and ventral lateral carinae strongly granular with large subconical granules; ventral transverse carinae with 5 subconical granules and 5 large dark granules on the posterior end of the segment; dorsolateral carinae weak, smooth to slightly granular (Carinae stronger in female and more granular). Telson. Reddish brown to dark red (Paler in female), smooth with scattered granules at the base of the vesicle; densely setose ventrally (lenght/width, ratio 0.29). Pedipalp. Reddish brown to dark red, with carinae darker. Orthobothriotaxic type “C” pattern typical for the genus (Francke, 1977). Femur wider than deep (ratio 0.93) (Fig. 4). Dorsal internal carina strong, granular, becoming obsolete towards posteriorly. Ventral external carina only present basally, weakly granular. Dorsal surface flat with few, small, sparse granules on median portion. Ventral surface flat, shagreened. Internal surface granular with large dark granules. Patella (Fig. 5): Dorsal internal carina weak to obsolete, with few large granules, one larger than the others. Dorsal medial carina strong, smooth. Dorsal external carina weak to moderate, smooth. Ventral external carina weak, smooth. Ventral medial carina weak to vestigial, smooth. Ventral internal carina strong, granular. Dorsal, external and ventral faces shagreened; internal surface granular. Chela (Fig 6): Dorsal marginal carina strong, granular. Dorsal secondary carina weak, smooth. Digital carina strong, smooth. External secondary carina weak to moderate, smooth. Ventral external carina originating at the base of the fixed finger and becoming obsolete basally towards the middle portion. Ventral medial carina strong, smooth. Ventral internal carina originating at the base of the fixed finger, weak, smooth. Fixed finger: dorsal surface basally smooth, densely setose, internal surface moderately concave and external surface slightly convex. Hemispermatophore: 6.9 mm in total length, lamellate, distal lamella 4.4 mm long. Capsular region 1.2 mm wide. Opercular “hook” narrow, without spines (Figs. 8–10). Intraspecific variation. Diplocentrus bicolor sp. n. shows sexual dimorphism: females are darker than males, and the pedipalp chela carinae are more strongly developed in males than in females. Pectinal tooth count variation is as follow: in males (n= 29): 6 combs with 14, 2 with 15, 13 with 16, 13 with 17, 14 with 18, 8 with 19 and 2 with 20 teeth; in females (n= 10): 1 comb with 12, 7 with 14, 7 with 15 and 5 with 16 teeth. Legs. Pale brown to yellow, smooth.Telotarsal formula: 6 / 7 6 / 7: 6 / 7 7 / 8: 7 / 8 7 / 8: 7 / 8 8 / 8. Telotarsal spiniform setae count variation as is show in table 2 (n= 39): Leg #\# of Setae 3 4 5 6 7 8 9 Missing 1 prolateral 1 42 31 1 1 retrolateral 1 34 40 2 1 2 prolateral 4 58 14 2 2 retrolateral 5 50 21 2 3 prolateral 1 10 63 4 3 retrolateral 1 1 19 55 2 4 prolateral 1 5 59 9 4 4 retrolateral 1 15 50 8 4 Therefore, the modal formula for the species is 5 / 7: 6 / 7: 7 / 8: 7 / 8.Published as part of Contreras-FĂ©lix, Gerardo A. & Santibåñez-LĂłpez, Carlos E., 2011, Diplocentrus bicolor sp. n. (Scorpiones: Diplocentridae) from Jalisco, Mexico, pp. 61-68 in Zootaxa 2992 on pages 62-66, DOI: 10.5281/zenodo.20602

    FIGURES 8–10. Paratype male hemispermatophore. 8. Ental view. 9 in Diplocentrus bicolor sp. n. (Scorpiones: Diplocentridae) from Jalisco, Mexico

    No full text
    FIGURES 8–10. Paratype male hemispermatophore. 8. Ental view. 9. Dorsal view. Scale bars= 3 mm. 10. Detail of the capsular region. Scale bar= 1 mm

    What is an “arachnid”? Consensus, consilience, and confirmation bias in the phylogenetics of chelicerata

    No full text
    The basal phylogeny of Chelicerata is one of the opaquest parts of the animal Tree of Life, defying resolution despite application of thousands of loci and millions of sites. At the forefront of the debate over chelicerate relationships is the monophyly of Arachnida, which has been refuted by most analyses of molecular sequence data. A number of phylogenomic datasets have suggested that Xiphosura (horseshoe crabs) are derived arachnids, refuting the traditional understanding of arachnid monophyly. This result is regarded as controversial, not least by paleontologists and morphologists, due to the widespread perception that arachnid monophyly is unambiguously supported by morphological data. Moreover, some molecular datasets have been able to recover arachnid monophyly, galvanizing the belief that any result that challenges arachnid monophyly is artefactual. Here, we explore the problems of distinguishing phylogenetic signal from noise through a series of in silico experiments, focusing on datasets that have recently supported arachnid monophyly. We assess the claim that filtering by saturation rate is a valid criterion for recovering Arachnida. We demonstrate that neither saturation rate, nor the ability to assemble a molecular phylogenetic dataset supporting a given outcome with maximal nodal support, is a guarantor of phylogenetic accuracy. Separately, we review empirical morphological phylogenetic datasets to examine characters supporting Arachnida and the downstream implication of a single colonization of terrestrial habitats. We show that morphological support of arachnid monophyly is contingent upon a small number of ambiguous or incorrectly coded characters, most of these tautologically linked to adaptation to terrestrial habitats
    corecore