95 research outputs found

    Is the Mediterranean Sean Outflow conditioning cold water corals in the North Atlantic?

    Get PDF
    posterWithin the context of the UE project ATLAS, in September - October 2016 on board RV Sarmiento de Gamboa, the MEDWAVES (MEDiterranean out flow WAter and Vulnerable EcosystemS) targeted areas under the potential influence of the MOW (Mediterranean Water Outflow) within the Mediterranean and Atlantic realms. These include seamounts where cold-water corals (CWC) have been reported, they may act as essential “stepping stones” connecting fauna of seamounts in the Mediterranean with those of seamounts in the continental shelf of Portugal, the Azores and the Mid‐ Atlantic Ridge. During MEDWAVES sampling was conducted through several seamounts: Formigas (Azores), Ormonde & Gazul (North Atlantic) and Seco de los Olivos (Alboran Sea). High quality CO2 measurements were conducted in the 500 meters above the bottom in order to characterize the water masses and detect the MOW spreading. MOW is warm and salty, but also high in alkalinity and pH. Is MOW conditioning CWC

    Dynamic prokaryotic communities in the dark western Mediterranean Sea

    Get PDF
    Dark ocean microbial dynamics are fundamental to understand ecosystem metabolism and ocean biogeochemical processes. Yet, the ecological response of deep ocean communities to environmental perturbations remains largely unknown. Temporal and spatial dynamics of the meso- and bathypelagic prokaryotic communities were assessed throughout a 2-year seasonal sampling across the western Mediterranean Sea. A common pattern of prokaryotic communities’ depth stratification was observed across the different regions and throughout the seasons. However, sporadic and drastic alterations of the community composition and diversity occurred either at specific water masses or throughout the aphotic zone and at a basin scale. Environmental changes resulted in a major increase in the abundance of rare or low abundant phylotypes and a profound change of the community composition. Our study evidences the temporal dynamism of dark ocean prokaryotic communities, exhibiting long periods of stability but also drastic changes, with implications in community metabolism and carbon fluxes. Taken together, the results highlight the importance of monitoring the temporal patterns of dark ocean prokaryotic communities.Versión del editor2,92

    Seasonal Niche Partitioning of Surface Temperate Open Ocean Prokaryotic Communities

    Get PDF
    Surface microbial communities are exposed to seasonally changing environmental conditions, resulting in recurring patterns of community composition. However, knowledge on temporal dynamics of open ocean microbial communities remains scarce. Seasonal patterns and associations of taxa and oligotypes from surface and chlorophyll maximum layers in the western Mediterranean Sea were studied over a 2-year period. Summer stratification versus winter mixing governed not only the prokaryotic community composition and diversity but also the temporal dynamics and co-occurrence association networks of oligotypes. Flavobacteriales, Rhodobacterales, SAR11, SAR86, and Synechococcales oligotypes exhibited contrasting seasonal dynamics, and consequently, specific microbial assemblages and potential inter-oligotype connections characterized the different seasons. In addition, oligotypes composition and dynamics differed between surface and deep chlorophyll maximum (DCM) prokaryotic communities, indicating depth-related environmental gradients as a major factor affecting association networks between closely related taxa. Taken together, the seasonal and depth specialization of oligotypes suggest temporal dynamics of community composition and metabolism, influencing ecosystem function and global biogeochemical cycles. Moreover, our results indicate highly specific associations between microbes, pointing to keystone ecotypes and fine-tuning of the microbes realized niche.En prens

    Dynamics of actively dividing prokaryotes in the western Mediterranean Sea

    Get PDF
    Microbial community metabolism and functionality play a key role modulating global biogeochemical processes. However, the metabolic activities and contribution of actively growing prokaryotes to ecosystem energy fluxes remain underexplored. Here we describe the temporal and spatial dynamics of active prokaryotes in the different water masses of the Mediterranean Sea using a combination of bromodeoxyuridine labelling and 16S rRNA gene Illumina sequencing. Bulk and actively dividing prokaryotic communities were drastically different and depth stratified. Alteromonadales were rare in bulk communities (contributing 0.1% on average) but dominated the actively dividing community throughout the overall water column (28% on average). Moreover, temporal variability of actively dividing Alteromonadales oligotypes was evinced. SAR86, Actinomarinales and Rhodobacterales contributed on average 3–3.4% each to the bulk and 11, 8.4 and 8.5% to the actively dividing communities in the epipelagic zone, respectively. SAR11 and Nitrosopumilales contributed less to the actively dividing than to the bulk communities during all the study period. Noticeably, the large contribution of these two taxa to the total prokaryotic communities (23% SAR11 and 26% Nitrosopumilales), especially in the meso- and bathypelagic zones, results in important contributions to actively dividing communities (11% SAR11 and 12% Nitrosopumilales). The intense temporal and spatial variability of actively dividing communities revealed in this study strengthen the view of a highly dynamic deep ocean. Our results suggest that some rare or low abundant phylotypes from surface layers down to the deep sea can disproportionally contribute to the activity of the prokaryotic communities, exhibiting a more dynamic response to environmental changes than other abundant phylotypes, emphasizing the role they might have in community metabolism and biogeochemical processes.This research has been supported by RADMED-TRES (2015–2019) and ATHAPOC (CTM2014-54374-R) projects, funded by the Spanish Institute of Oceanography and the Spanish Ministry of Economy and Competitiveness, respectively. CM was supported by pre-doctoral FPI fellowship from Conselleria d’Innovació, Recerca i Turisme of the regional Government of the Balearic Islands, co-financed by the European Social Fund as part of the FSE 2014-2020 operational program.Postprin

    Is Deep Sea Cold Water Corals distribution constrained by CO2 distinct signatures?

    Get PDF
    conferenceObjectThe MEDWAVESThe MEDWAVES (MEDiterranean out flow WAter and Vulnerable EcosystemS) cruise was developed in the framework of the ATLAS project, with the main objective of determining areas under the influence of the Mediterranean Overflow Water within the Mediterranean and Atlantic areas. MEDWAVES cruise (LEG 1: Cadiz – Punta Delgada and LEG 2: Punta Delgada – Málaga) was completed between September-October 2016 on board the Spanish R/V Sarmiento de Gamboa. Within the specific aim of evaluating the biogeochemichal role of the Mediterranean Water, over and around the Formigas, Ormonde and Seco de los Olivos seamounts, and the Gazul Mud volcano, some CO2 system variables were measured on board (pH, total alkalinity and carbonate ion concentration) together with dissolved oxygen samples. The chemistry of the CO2 in the Mediterranean Sea is very particular, characterised by warm, salty and high alkalinity waters [1]. The Mediterranean Water goes into the Atlantic Ocean through the strait of Gibraltar, being clearly identified as the most saline water of the water column located at approximately 1000 dbar [2]. Apart from the water mass characteristic, other properties and organism characteristics of the Mediterranean Sea are spilt into the Atlantic. According to the objectives of MEDWAVES cruise and taking into account the fine scale sampling made over the 400m above the bottom, we will characterise the CO2 system of the four different areas, trying to distinguish the signature of the Mediterranean Water in each seamount. The presence of depth cold water coral in those seamounts is poorly known and we would like to connect those of Mediterranean Sea with those of the continental shelf of Portugal, the Azores and the Mid-Atlantic Ridge with the CO2 variables. Hence, a second step will be to evaluate the connexion between the cold water corals and the CO2 system

    Phytoplankton Community Structure Is Driven by Stratification in the Oligotrophic Mediterranean Sea

    Get PDF
    The phytoplankton community composition, structure, and biomass were investigated under stratified and oligotrophic conditions during summer for three consecutive years in the Mediterranean Sea. Our results reveal that the phytoplankton community structure was strongly influenced by vertical stratification. The thermocline separated two different phytoplankton communities in the two layers of the euphotic zone, characterized by different nutrient and light availability. Picoplankton dominated in terms of abundance and biomass at all the stations sampled and throughout the photic zone. However, the structure of the picoplanktonic community changed with depth, with Synechococcus and heterotrophic prokaryotes dominating in surface waters down to the base of the thermocline, and Prochlorococcus and picoeukaryotes contributing relatively more to the community in the deep chlorophyll maximum (DCM). Light and nutrient availability also influenced the communities at the DCM layer. Prochlorococcus prevailed in deeper DCM waters characterized by lower light intensities and higher picophytoplankton abundance was related to lower nutrient concentrations at the DCM. Picoeukaryotes were the major phytoplankton contributors to carbon biomass at surface (up to 80%) and at DCM (more than 40%). Besides, contrarily to the other phytoplankton groups, picoeukaryotes cell size progressively decreased with depth. Our research shows that stratification is a major factor determining the phytoplankton community structure; and underlines the role that picoeukaryotes might play in the carbon flux through the marine food web, with implications for the community metabolism and carbon fate in the ecosystem.En prens

    The reduction of the metabolyc syndrome in Navarra-Spain (RESMENA-S) study; a multidisciplinary strategy based on chrononutrition and nutritional education, together with dietetic and psychological control

    Get PDF
    Introduction: The high prevalence of metabolic syndrome (MS) in Spain requires additional efforts for prevention and treatment. Objective: The study RESMENA-S aims to improve clinical criteria and biomarkers associated with MS though an integral therapy approach. Methods: The study is a randomized prospective parallel design in which is expected to participate a total of 100 individuals. The RESMENA-S group (n = 50) is a personalized weight loss (30% energy restriction) diet, with a macronutrient distribution (carbohydrate / fat / protein) of 40/30/30, high meal frequency (7 / day), low glycemic index/load and high antioxidant capacity as well as a high adherence to the Mediterranean diet. The control group (n = 50) is assigned to a diet with the same energy restriction and based on the American Heart Association pattern. Both experimental groups are under dietary and psychological control during 8 weeks. Likewise, for an additional period of 16 weeks of self-control, is expected that volunteers will follow the same pattern but with no dietary advice. Results: Anthropometrical data and body composition determinations as well as blood and urine samples are being collected at the beginning and end of each phase. This project is registered at www.clinicaltrials.gov with the number NCT01087086 and count with the Research Ethics Committee of the University of Navarra approval (065/2009). Conclusions: Intervention trials to promote the adoption of dietary patterns and healthy lifestyle are of great importance to identify the outcomes and nutritional mechanisms that might explain the link between obesity, metabolic syndrome and associated complications

    Seasonal and Long-Term Variability of the Mixed Layer Depth and its Influence on Ocean Productivity in the Spanish Gulf of Cádiz and Mediterranean Sea

    Get PDF
    The warming of the surface ocean is expected to increase the stratification of the upper water column. This would decrease the efficiency of the wind-induced mixing, reducing the nutrient supply to the euphotic layer and the productivity of the oceans. Climatic projections show that the Mediterranean Sea will experience a strong warming and salting along the twenty first century. Nevertheless, very few works have found and quantified changes in the water column stratification of the Western Mediterranean. In this work, we obtain time series of Mixed Layer Depth (MLD) along the Spanish Mediterranean waters and the Gulf of Cådiz, using periodic CTD profiles collected under the umbrella of the Ocean Observing system of the Instituto Español de Oceanografía (IEO-CSIC). The length of the time series analyzed is variable, depending on the geographical area, but in some cases these time series extend from the beginning of the 1990s decade. Our results show that at present, no statistically significant changes can be detected. These results are confirmed by the analysis of MLD time series obtained from Argo profilers. Some of the meteorological factors that could affect the water column stratification (wind intensity and precipitation rates) did not experience significant changes for the 1990-2021 period, neither were observed long-term changes in the chlorophyll concentration. The hypothesis proposed to explain this lack of trends, is that the salinity increase of the surface waters has compensated for the warming, and consequently, the density of the upper layer of the Western Mediterranean (WMED) has remained constant. As the wind intensity has not experienced significant trends, the stratification of the Spanish Mediterranean waters and those of the Gulf of Cådiz would have not been affected. Nevertheless, we do not discard that our results are a consequence of the short length of the available time series and the large variance of the variables analyzed, evidencing the importance of the maintenance of the ocean monitoring programs.En prens

    Spectrophotometric Measurement of Carbonate Ion in Seawater over a Decade: Dealing with Inconsistencies

    Get PDF
    The spectrophotometric methodology for carbonate ion determination in seawater was first published in 2008 and has been continuously evolving in terms of reagents and formulations. Although being fast, relatively simple, affordable, and potentially easy to implement in different platforms and facilities for discrete and autonomous observations, its use is not widespread in the ocean acidification community. This study uses a merged overdetermined CO2 system data set (carbonate ion, pH, and alkalinity) obtained from 2009 to 2020 to assess the differences among the five current approaches of the methodology through an internal consistency analysis and discussing the sources of uncertainty. Overall, the results show that none of the approaches meet the climate goal (± 1 % standard uncertainty) for ocean acidification studies for the whole carbonate ion content range in this study but usually fulfill the weather goal (± 10 % standard uncertainty). The inconsistencies observed among approaches compromise the consistency of data sets among regions and through time, highlighting the need for a validated standard operating procedure for spectrophotometric carbonate ion measurements as already available for the other measurable CO2 variables.4,84

    Ocean Circulation over Formigas and Ormonde Seamounts

    Get PDF
    Seamounts constitute an obstacle to the free ocean flow, modifying the patter of circulation. As a result of these alterations, a variety of hydrodynamical processes and phenomena may take place in seamounts, among others, Taylor columns/caps. These oceanographic effects may turn seamounts into very productive ecosystems with high biodiversity. Under these conditions seamounts provide a particularly good environment for the settle of some organisms, acting as stepping stones and contributing to its dispersal. In this study, we verify if these oceanographic effects explain the presence of cold-water corals of Mediterranean origin in the Atlantic. To achieve this, three seamounts in the path of the Mediterranean Outflow Water (MOW) through the Eastern North Atlantic were selected: the Gazul mud volcano, and the Ormonde and Formigas seamounts. In order to determine the hydrographic and dynamical conditions in each one of the three locations, CTD, LADPC and biochemical observations were carried out. Taylor columns were not observed in any of the three sampled areas. Although we found suggestions of upwelling/downwelling systems, their effect was barely noticed in the circulation pattern. The oceanographic processes in those areas are more influenced by the vertical distribution of water masses, which determine the stability of the water column. Moreover, the high values of the Brunt-VÀisÀlÀ frequency around the MOW halocline can lead to the formation of internal waves. These perturbations in the water column can enhance the vertical mixing, producing suspension, which, in turn, could affect the vertical distribution of cold-water corals
    • 

    corecore