1,160 research outputs found

    Extractable nitrogen and microbial community structure respond to grassland restoration regardless of historical context and soil composition.

    Get PDF
    Grasslands have a long history of invasion by exotic annuals, which may alter microbial communities and nutrient cycling through changes in litter quality and biomass turnover rates. We compared plant community composition, soil chemical and microbial community composition, potential soil respiration and nitrogen (N) turnover rates between invaded and restored plots in inland and coastal grasslands. Restoration increased microbial biomass and fungal : bacterial (F : B) ratios, but sampling season had a greater influence on the F : B ratio than did restoration. Microbial community composition assessed by phospholipid fatty acid was altered by restoration, but also varied by season and by site. Total soil carbon (C) and N and potential soil respiration did not differ between treatments, but N mineralization decreased while extractable nitrate and nitrification and N immobilization rate increased in restored compared with unrestored sites. The differences in soil chemistry and microbial community composition between unrestored and restored sites indicate that these soils are responsive, and therefore not resistant to feedbacks caused by changes in vegetation type. The resilience, or recovery, of these soils is difficult to assess in the absence of uninvaded control grasslands. However, the rapid changes in microbial and N cycling characteristics following removal of invasives in both grassland sites suggest that the soils are resilient to invasion. The lack of change in total C and N pools may provide a buffer that promotes resilience of labile pools and microbial community structure

    Trade-offs Between Water Transport Capacity and Drought Resistance in Neotropical Canopy Liana and Tree Species

    Get PDF
    In tropical forest canopies, it is critical for upper shoots to efficiently provide water to leaves for physiological function while safely preventing loss of hydraulic conductivity due to cavitation during periods of soil water deficit or high evaporative demand. We compared hydraulic physiology of upper canopy trees and lianas in a seasonally dry tropical forest to test whether trade-offs between safety and efficiency of water transport shape differences in hydraulic function between these two major tropical woody growth forms. We found that lianas showed greater maximum stem-specific hydraulic conductivity than trees, but lost hydraulic conductivity at less negative water potentials than trees, resulting in a negative correlation and trade-off between safety and efficiency of water transport. Lianas also exhibited greater diurnal changes in leaf water potential than trees. The magnitude of diurnal water potential change was negatively correlated with sapwood capacitance, indicating that lianas are highly reliant on conducting capability to maintain leaf water status, whereas trees relied more on stored water in stems to maintain leaf water status. Leaf nitrogen concentration was related to maximum leaf-specific hydraulic conductivity only for lianas suggesting that greater water transport capacity is more tied to leaf processes in lianas compared to trees. Our results are consistent with a trade-off between safety and efficiency of water transport and may have implications for increasing liana abundance in neotropical forests

    Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage

    Get PDF
    Author Posting. © Ecological Society of America, 2014. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 95 (2014): 2062–2068, doi:10.1890/13-1671.1.Foliar nitrogen to phosphorus (N:P) ratios are widely used to indicate soil nutrient availability and limitation, but the foliar ratios of woody plants have proven more complicated to interpret than ratios from whole biomass of herbaceous species. This may be related to tissues in woody species acting as nutrient reservoirs during active growth, allowing maintenance of optimal N:P ratios in recently produced, fully expanded leaves (i.e., “new” leaves, the most commonly sampled tissue). Here we address the hypothesis that N:P ratios of newly expanded leaves are less sensitive indicators of soil nutrient availability than are other tissue types in woody plants. Seedlings of five naturally established tree species were harvested from plots receiving two years of fertilizer treatments in a lowland tropical forest in the Republic of Panama. Nutrient concentrations were determined in new leaves, old leaves, stems, and roots. For stems and roots, N:P ratios increased after N addition and decreased after P addition, and trends were consistent across all five species. Older leaves also showed strong responses to N and P addition, and trends were consistent for four of five species. In comparison, overall N:P ratio responses in new leaves were more variable across species. These results indicate that the N:P ratios of stems, roots, and older leaves are more responsive indicators of soil nutrient availability than are those of new leaves. Testing the generality of this result could improve the use of tissue nutrient ratios as indices of soil nutrient availability in woody plants.Data are from Santiago et al. (2012), which was supported by a grant from the Andrew W. Mellon Foundation to S. J. Wright, a Smithsonian Institute Scholarly Studies grant to S. J. Wright and J. B. Yavitt, and a University of California Regent’s Faculty Fellowship to L. S. Santiago. L. A. Schreeg was partially supported through a Marine Biological Laboratory-Brown University SEED grant to Z. Cardon, S. Porder, and L. A. Schreeg

    Inflammatory biomarker changes and their correlation with Framingham cardiovascular risk and lipid changes in antiretroviral-naive HIV-infected patients treated for 144 weeks with abacavir/lamivudine/atazanavir with or without ritonavir in ARIES.

    Get PDF
    Propensity for developing coronary heart disease (CHD) is linked with Framingham-defined cardiovascular risk factors and elevated inflammatory biomarkers. Cardiovascular risk and inflammatory biomarkers were evaluated in ARIES, a Phase IIIb/IV clinical trial in which 515 antiretroviral-naive HIV-infected subjects initially received abacavir/lamivudine + atazanavir/ritonavir for 36 weeks. Subjects who were virologically suppressed by week 30 were randomized 1:1 at week 36 to either maintain or discontinue ritonavir for an additional 108 weeks. Framingham 10-year CHD risk scores (FRS) and risk category o

    UBVRIz Light Curves of 51 Type II Supernovae

    Get PDF
    We present a compilation of UBV RIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986 to 2003: the Cerro Tololo Supernova Survey, the Calan/Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being thus shorter (longer) for larger (smaller) s values.Comment: 110 pages, 9 Figures, 6 Tables, accepted in A

    Determinants of change in subtropical tree diameter growth with ontogenetic stage

    Full text link
    We evaluated the degree to which relative growth rate (RGR) of saplings and large trees is related to seven functional traits that describe physiological behavior and soil environmental factors related to topography and fertility for 57 subtropical tree species in Dinghushan, China. The mean values of functional traits and soil environmental factors for each species that were related to RGR varied with ontogenetic stage. Sapling RGR showed greater relationships with functional traits than large-tree RGR, whereas large-tree RGR was more associated with soil environment than was sapling RGR. The strongest single predictors of RGR were wood density for saplings and slope aspect for large trees. The stepwise regression model for large trees accounted for a larger proportion of variability (R 2 = 0.95) in RGR than the model for saplings (R 2 = 0.55). Functional diversity analysis revealed that the process of habitat filtering likely contributes to the substantial changes in regulation of RGR as communities transition from saplings to large trees. © 2014 Springer-Verlag Berlin Heidelberg

    From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics

    Get PDF
    Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves into a critical and constructive attitude in our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.Comment: 111 pages, 11 figures uses elsarticle latex clas
    corecore