460 research outputs found

    Sharply curved turn around duct flow predictions using spectral partitioning of the turbulent kinetic energy and a pressure modified wall law

    Get PDF
    Computational predictions of turbulent flow in sharply curved 180 degree turn around ducts are presented. The CNS2D computer code is used to solve the equations of motion for two-dimensional incompressible flows transformed to a nonorthogonal body-fitted coordinate system. This procedure incorporates the pressure velocity correction algorithm SIMPLE-C to iteratively solve a discretized form of the transformed equations. A multiple scale turbulence model based on simplified spectral partitioning is employed to obtain closure. Flow field predictions utilizing the multiple scale model are compared to features predicted by the traditional single scale k-epsilon model. Tuning parameter sensitivities of the multiple scale model applied to turn around duct flows are also determined. In addition, a wall function approach based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients is tested. Turn around duct flow characteristics utilizing this modified wall law are presented and compared to results based on a standard wall treatment

    Iterative procedures for space shuttle main engine performance models

    Get PDF
    Performance models of the Space Shuttle Main Engine (SSME) contain iterative strategies for determining approximate solutions to nonlinear equations reflecting fundamental mass, energy, and pressure balances within engine flow systems. Both univariate and multivariate Newton-Raphson algorithms are employed in the current version of the engine Test Information Program (TIP). Computational efficiency and reliability of these procedures is examined. A modified trust region form of the multivariate Newton-Raphson method is implemented and shown to be superior for off nominal engine performance predictions. A heuristic form of Broyden's Rank One method is also tested and favorable results based on this algorithm are presented

    Validation of the space shuttle main engine steady state performance model

    Get PDF
    The primary objective was to present methods for validating predictions of Rocketdyne's most current version of the Space Shuttle Main Engine (SSME) Power Balance Model (PBM) with respect to physical relations governing flow systems. This required the development and implementation of postprocessors to check results of PBM computations for satisfaction of conservation relations. A cursory uncertainty analysis of PBM predictions with respect to mass and energy balances was performed. In addition, an effort to identify the empirical relations and physical assumptions within PBM which impact the ability of the model to attain rigorous balance was begun

    Evaluation of SSME test data reduction methods

    Get PDF
    Accurate prediction of hardware and flow characteristics within the Space Shuttle Main Engine (SSME) during transient and main-stage operation requires a significant integration of ground test data, flight experience, and computational models. The process of integrating SSME test measurements with physical model predictions is commonly referred to as data reduction. Uncertainties within both test measurements and simplified models of the SSME flow environment compound the data integration problem. The first objective of this effort was to establish an acceptability criterion for data reduction solutions. The second objective of this effort was to investigate the data reduction potential of the ROCETS (Rocket Engine Transient Simulation) simulation platform. A simplified ROCETS model of the SSME was obtained from the MSFC Performance Analysis Branch . This model was examined and tested for physical consistency. Two modules were constructed and added to the ROCETS library to independently check the mass and energy balances of selected engine subsystems including the low pressure fuel turbopump, the high pressure fuel turbopump, the low pressure oxidizer turbopump, the high pressure oxidizer turbopump, the fuel preburner, the oxidizer preburner, the main combustion chamber coolant circuit, and the nozzle coolant circuit. A sensitivity study was then conducted to determine the individual influences of forty-two hardware characteristics on fourteen high pressure region prediction variables as returned by the SSME ROCETS model

    Integrated model development for liquid fueled rocket propulsion systems

    Get PDF
    As detailed in the original statement of work, the objective of phase two of this research effort was to develop a general framework for rocket engine performance prediction that integrates physical principles, a rigorous mathematical formalism, component level test data, system level test data, and theory-observation reconciliation. Specific phase two development tasks are defined

    FNAS/summer faculty fellowship research continuation program. Task 6: Integrated model development for liquid fueled rocket propulsion systems. Task 9: Aspects of model-based rocket engine condition monitoring and control

    Get PDF
    The objective of Phase I of this research effort was to develop an advanced mathematical-empirical model of SSME steady-state performance. Task 6 of Phase I is to develop component specific modification strategy for baseline case influence coefficient matrices. This report describes the background of SSME performance characteristics and provides a description of the control variable basis of three different gains models. The procedure used to establish influence coefficients for each of these three models is also described. Gains model analysis results are compared to Rocketdyne's power balance model (PBM)

    Performance Evaluation of a Data Validation System

    Get PDF
    Online data validation is a performance-enhancing component of modern control and health management systems. It is essential that performance of the data validation system be verified prior to its use in a control and health management system. A new Data Qualification and Validation (DQV) Test-bed application was developed to provide a systematic test environment for this performance verification. The DQV Test-bed was used to evaluate a model-based data validation package known as the Data Quality Validation Studio (DQVS). DQVS was employed as the primary data validation component of a rocket engine health management (EHM) system developed under NASA's NGLT (Next Generation Launch Technology) program. In this paper, the DQVS and DQV Test-bed software applications are described, and the DQV Test-bed verification procedure for this EHM system application is presented. Test-bed results are summarized and implications for EHM system performance improvements are discussed

    Optimal Sensor Selection for Health Monitoring Systems

    Get PDF
    Sensor data are the basis for performance and health assessment of most complex systems. Careful selection and implementation of sensors is critical to enable high fidelity system health assessment. A model-based procedure that systematically selects an optimal sensor suite for overall health assessment of a designated host system is described. This procedure, termed the Systematic Sensor Selection Strategy (S4), was developed at NASA John H. Glenn Research Center in order to enhance design phase planning and preparations for in-space propulsion health management systems (HMS). Information and capabilities required to utilize the S4 approach in support of design phase development of robust health diagnostics are outlined. A merit metric that quantifies diagnostic performance and overall risk reduction potential of individual sensor suites is introduced. The conceptual foundation for this merit metric is presented and the algorithmic organization of the S4 optimization process is described. Representative results from S4 analyses of a boost stage rocket engine previously under development as part of NASA's Next Generation Launch Technology (NGLT) program are presented

    The ACS LCID project. X. The Star Formation History of IC 1613: Revisiting the Over-Cooling Problem

    Full text link
    We present an analysis of the star formation history (SFH) of a field near the half light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our observations reach the oldest main sequence turn-off, allowing a time resolution at the oldest ages of ~1 Gyr. Our analysis shows that the SFH of the observed field in IC 1613 is consistent with being constant over the entire lifetime of the galaxy. These observations rule out an early dominant episode of star formation in IC 1613. We compare the SFH of IC 1613 with expectations from cosmological models. Since most of the mass is in place at early times for low mass halos, a naive expectation is that most of the star formation should have taken place at early times. Models in which star formation follows mass accretion result in too many stars formed early and gas mass fractions which are too low today (the "over-cooling problem"). The depth of the present photometry of IC 1613 shows that, at a resolution of ~1 Gyr, the star formation rate is consistent with being constant, at even the earliest times, which is difficult to achieve in models where star formation follows mass assembly.Comment: 13 pages, 12 figures, accepted for publication in the Ap
    • …
    corecore