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Eli De Poorter†, Jeroen Famaey∗

∗University of Antwerp - imec, IDLab, Department of Mathematics and Computer Science, Belgium
†Ghent University - imec, IDLab, Department of Information Technology, Belgium

Abstract—The Restricted Access Window (RAW) mechanism
proposed by IEEE 802.11ah promises to address one of the
major problems of the Internet of Things (IoT): high channel
contention in large-scale densely deployed sensor networks. The
RAW feature allows the Access Point (AP) to divide stations into
different groups, with only the stations in the same group being
allowed to access the channel simultaneously. Existing station
grouping strategies only support homogeneous scenarios, where
all sensor stations have the same fixed data transmission interval,
modulation and coding scheme (MCS) and packet size. In this
paper, we present two contributions to address this issue. First,
a surrogate model that predicts RAW performance given specific
network conditions and RAW configuration parameters. It is
fast to train and can be solved in real-time. Second, the Model-
Based RAW Optimization Algorithm (MoROA), which uses the
surrogate model to determine the optimal RAW configuration in
real-time, for heterogeneous stations and dynamic traffic. We
compare the accuracy of our surrogate model to simulation
results. Performance of MoROA is compared to existing RAW
optimization algorithms and traditional 802.11 channel access
methods. The results shows that the trained surrogate model can
accurately predict RAW performance with a relative error less
than 7% and 10% for 95% and 98% of the RAW configurations
respectively. MoROA achieves a throughput up to twice as
high as traditional 802.11 channel access functions in dense
heterogeneous networks.

I. INTRODUCTION

The recently released long-range and low-power Wi-Fi
standard IEEE 802.11ah proposes a novel channel access
method, referred to as Restricted Access Window (RAW). It
is a flexible hybrid method, highly suited to provide scalable
connectivity to both sparsely and densely deployed low-power
devices. RAW is based on station grouping and attempts to
reduce contention and collisions in highly dense deployments
by dividing stations into groups and allowing channel access
to one group at a time. Consequently, IEEE 802.11ah allows
up to 8192 stations to connect to a single Access Point (AP).

Figure 1 schematically depicts how RAW works. Specifi-
cally, the channel airtime is split into several intervals, some
of which are assigned to RAW groups, while others are shared
and can be accessed by all stations using the traditional
802.11 Enhanced Distributed Channel Access and Distributed
Coordination Function (EDCA/DCF), which rely on carrier-
sense multiple access with collision avoidance (CSMA/CA)
channel access. At fixed intervals a beacon frame is trans-
mitted, carrying a RAW Parameter Set (RPS) information
element. The RPS specifies the stations belonging to each
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Fig. 1: Schematic representation of the RAW mechanism

group using the start and end association ID (AID), the group
start time, and duration. Moreover, each RAW group consists
of one or more equal-duration slots, among which the stations
assigned to the RAW group are evenly split (using round robin
assignment). The RPS information element also contains the
number of slots, slot format and slot duration count sub-fields,
which jointly determine the RAW slot duration. For a more
in-depth description of RAW, the reader is referred to existing
literature [1], [2].

The 802.11ah standard, however, does not specify how to
configure the actual RAW grouping parameters. Additionally,
previous research has shown that the optimal RAW config-
uration depends on a variety of network-related parameters,
such as the number of stations, traffic patterns, and network
load [3]. Incorrect configuration severely impacts throughput,
latency and energy efficiency. As such, there is a need for
RAW optimization algorithms that collect network-related
information, and at the start of each beacon interval adapt the
RAW configuration based on the current network conditions.
Such an algorithm should be able to calculate a new RAW
configuration in real-time (i.e., at most a few milliseconds),
as it needs to use network-related information obtained from
the previous beacon interval and calculate a solution before the
new RPS information element is broadcast. Moreover, in order
to select the optimal RAW parameters, it should be able to
predict RAW performance for a given set of parameters under
specific network and traffic conditions. This is achieved using
some sort model of the environment, which takes as input
network conditions and a RAW configuration, and generates
as output one or more performance metrics (e.g., throughput
or energy consumption).

In the past, several analytics models have been proposed to
predict RAW performance [4], [5]. However, such models are
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too computationally hard to be used in real-time, and rely on
simplifications and unrealistic assumptions (e.g., no capture
effect, no hidden nodes, homogeneous stations, saturated or
static traffic). As a first contribution, we present an alternative
solution to RAW performance modeling, based on surrogate
modeling and trained using realistic simulation results. A
surrogate model is based on supervised learning (e.g., Kriging,
or neural networks), but can be accurately trained with very
few labeled sample data points [6]. This is important, as
a RAW configuration depends on many input variables that
can take a wide range of values. Moreover, once trained,
evaluating the model is equivalent to a constant-time table
lookup, which can be easily executed in real-time. By using
realistic simulation results, obtained from the IEEE 802.11ah
implementation in ns-3 [7], the model takes into account the
capture effect, as well as heterogeneous stations and different
traffic loads.

As a second contribution, we propose the Model-Based
RAW Optimization Algorithm (MoROA). It clusters stations
into groups based on their traffic characteristics and deter-
mines the optimal RAW configuration by solving a non-linear
constrained optimization problem. In this problem, the trained
surrogate model is used to maximize throughput and fairness
in terms of packets deliver ratio. In contrast to existing algo-
rithms, MoROA supports dynamic and heterogeneous traffic,
as well as heterogeneous stations with different modulation
and coding schemes (MCSs) and packet sizes [2], [8].

The remainder of this paper is structured as follows. Sec-
tion II surveys related work in terms of RAW performance
modeling and optimization algorithms and compares them to
our contributions. Section III details the methodology used to
define and train the surrogate model. MoROA is described in
Section IV. Section V evaluates the accuracy of our presented
model, comparing it to simulation results. Moreover, perfor-
mance of MoROA is evaluated and compared to state of the
art RAW optimization algorithms, as well as the traditional
EDCA/DCF function of IEEE 802.11. Finally, Section VI
offers conclusions and a short overview of future work.

II. RELATED WORK

Since the RAW feature was proposed, several studies have
been conducted on the evaluation of RAW performance.
Raeesi et al. demonstrate that the RAW mechanism can pro-
vide substantial improvements in terms of throughput, delay
and energy consumption, in particular in highly-loaded dense
network scenarios [9]. In our own previous work [3], we
further evaluated the optimal RAW station grouping config-
uration under a variety of traffic conditions, such as traffic
load, number of stations and RAW group duration on the
optimal number of RAW groups. These works prove the strong
correlation between network and traffic conditions on one
hand, and the optimal RAW configuration on the other. This
supports the hypothesis that there is a need for real-time RAW
parameter optimization.

To determine the optimal RAW parameters, several ana-
lytical models have been proposed to calculate RAW perfor-

mance under specific network and traffic conditions. These
models make use of different techniques, such as probability
theory [5], Markov chains [4], [10], and maximum likelihood
estimation [11]. Early works assume the network is operating
under saturated state, where each station always has packets
to send [10], [11]. This is not a very realistic assumption
for Internet of Things (IoT) and machine-type communication
(MTC) [4]. The model proposed by Zheng et al. considers
both cross and non-cross slot boundary traffic, and is able to
calculate the throughout with any given number of stations
and RAW duration [10]. Park et al. determine the RAW group
duration for a certain number of stations to get maximized
successful transmission probability [11]. In contrast, more
recent works assume each station sends one packet per RAW
slot interval [4], [5], [12]. Khorov et al. built a model to
analyze the successful packet transmission probability under
a given RAW group duration [4]. The model of Wang et al.
focuses on energy consumption [5].

All existing analytical models share two main shortcomings.
First, they are computationally hard. This makes it infeasible
to execute them in real-time on actual AP hardware, where
at most a few milliseconds are available at the start of the
beacon interval to calculate a new RAW configuration. More
importantly, they assume ideal channel conditions, without
communication errors, delays or capture effects. The combi-
nation of these factors make such models useful only from a
theoretical point of view, to analyze the effectiveness of RAW
under a variety of conditions. However, they cannot be used for
real-time station grouping under dynamic and realistic traffic
conditions. Our proposed surrogate modeling approach aims
to address both of these issues.

In addition to modeling RAW performance, it is necessary
to use this information in real-time, in order to optimize
RAW parameters in an actual network. Current solutions are
mainly based on set partitioning. These RAW optimization
algorithms assume the number of RAW slots and groups is
predetermined, and decide how to partition the associated
stations among them, according to some metric. Their sim-
plicity makes it computationally feasible to deploy them in
real networks. Several algorithms utilize RAW to mitigate
hidden node collisions by splitting mutually hidden nodes
into orthogonal groups [13], [14], [15]. Chang et al. proposed
a set partitioning algorithm that assumes the (static) traffic
demand of each station is known by the AP and load balances
them across groups [16]. Other existing algorithms focus on
simple partitioning metrics, such as fully random [17] or
based on the back-off timer value [18], which in reality is not
known to the AP. Such set partitioning algorithms have several
shortcomings. First, high channel contention exists in dense
sensor network even without the presence of hidden nodes.
Reducing hidden nodes can mitigate collisions to some extent,
but is not sufficient. Second, they expect all information, such
as the exact traffic intensity of each station, to be readily
available at the AP side, which in reality is not the case.
Third, they assume that the number of groups and slots as
well as their duration are predefined, and only the partitioning



of stations among them needs to be solved. The number of
groups and their duration, however, significantly influence
RAW optimality [3]. Finally, none of the presented algorithms
take into account traffic dynamics. In a real network, the
upstream traffic intensity of stations may change over time
for a variety of reasons, and the algorithm should therefore
adapt to these changes.

Recently, we proposed the Traffic-Aware RAW Optimiza-
tion Algorithm (TAROA) [2], [8]. It adapts the optimal
RAW parameters in real-time by estimating the current traffic
conditions, based solely on information available at the AP.
However, it still has two shortcomings that can be addressed.
First, it derives the optimal number of stations to assign to a
group based on saturated state simulation results. Second, it
only supports homogeneous stations (i.e., all stations use the
same MCS and average packet size). In this paper we present
an improved algorithm, called MoROA, which supports a
wide range of traffic conditions and heterogeneous stations,
by using generic and flexible surrogate models. This results in
significant performance improvements, especially under non-
saturated conditions, which are prevalent in IoT and MTC
scenarios.

III. SURROGATE MODEL OF RAW PERFORMANCE

This sections introduces the surrogate modeling approach
and toolbox, as well as its integration with the ns-3 network
simulator. Subsequently, we describe how surrogate modeling
can be used to train a performance model using supervised ma-
chine learning, for estimating throughput of the IEEE 802.11ah
RAW under a wide range of network and traffic conditions.

A. Surrogate model training methodology

In order for the AP to determine the optimal RAW parame-
ters in real-time, a RAW performance model is needed. Given
the current network conditions (e.g., network topology, traffic)
and a set of RAW parameter values (e.g., number of groups
and slots, group duration, station assignment) the model should
estimate performance (e.g., in terms of throughput). Based
on this model, optimal RAW parameters can subsequently
be derived based on current network conditions. However,
existing analytical models are computationally expensive and
unrealistic due to their assumptions. Surrogate modeling pro-
vides the answer [6]. A surrogate model is trained at design
time, using a limited number of input-output sample data
points obtained through simulation or real-life experiments.
Surrogate modeling is especially suited for tasks with a large
input space, as an accurate model can be trained based on
relatively little input data points. Moreover, evaluating the
model at runtime is computationally efficient, equivalent to
a constant-time table lookup. This makes surrogate modeling
highly suitable for RAW performance modeling, as the input
space is very large, and efficient runtime model evaluation is
needed for real-time RAW parameter selection. Additionally,
by using realistic simulation results, a surrogate model does
not suffer from the same restrictive assumptions as existing
analytical models.
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Fig. 2: Training methodology used to model RAW
performance

The Matlab Surrogate Modeling (SUMO) Toolbox is a
flexible framework for accurate global surrogate modeling [6].
The general SUMO modeling architecture is illustrated in
Figure 2a. The controller plays the key role, managing the
modeling process. First, the user offers a set of initial sample
data points (including input and output) to the controller. The
controller uses those points to construct an initial surrogate
model. Next, with the constructed model, the controller pre-
dicts the next input space element from which the expected
accuracy improvement is the largest. The modeling process
keeps iterating, and terminates once certain stopping condi-
tions are met (e.g., the maximum training time is exceeded).

To train the RAW model, we used our previously developed
IEEE 802.11ah ns-3 simulation module [7]. Figure 2b shows
our adapted training methodology to allow the integration
between ns-3 and the SUMO toolbox. The modified controller
conducts similar tasks as the original SUMO controller. How-
ever, it now directly interfaces with ns-3. When a new sample
data point is generated for which the output is unknown, the
controller will initiate an ns-3 simulation to determine the
output associated with the input parameter values of the data
point. The SUMO toolbox executes the following steps to
train the RAW performance surrogate model, using the same
numbering as the arrows in Figure 2b:



1) The controller reads the settings of the 802.11ah
RAW experiment, including the general parameters of
802.11ah (cf. Table I) and the input space parameters
(cf. Table II).

2) The controller generates an initial sample set based on
the input space, and starts ns-3 experiments with the
required settings.

3) At the end of each experiment, the controller retrieves
the evaluation criterion (e.g., throughput) of the experi-
ment and builds the sample data space.

4) After the experiments with the initial sample data set,
the controller builds the surrogate model and calculates
the cross validation score.

5) The built surrogate model estimates the next sample data
point to evaluate with the highest expected accuracy
improvement.

6) The controller starts the next ns-3 experiment for the
newly selected sample data point.

7) The controller reads the output of the experiment and
updates the sample data space, then goes back to step
4. This process continues until the stop conditions are
met.

In our experiments, the SUMO toolbox is configured to use
the latin hypercube sampling method [19] to generate 100
initial sample data points, Kriging interpolation is used to
train the model [20], FLOLA-Voronoi sampling for generating
the next sample points [21], and the 10-fold cross-validation
with a root-relative square error (RRSE) measure to evaluate
the model accuracy [22]. The training stops once the cross-
validation score lower than or equal to 0.10 (2 digits of
precision) occurs 10 times in succession, or the number of
training data points exceeds 2500.

B. Training scenario

In this section, we provide an overview of the static simu-
lation environment parameters used during training. Since the
goal of RAW is scalability under uplink traffic, we consider
an IoT sensing scenario, where sensors periodically monitor
the environment and send the resulting data to a server (via
the AP). The PHY and MAC layer parameters are shown
in Table I. Given the low-power nature of battery powered
sensors, the PHY layer parameters are configured based on
the low-power 802.11ah radio hardware prototype developed
by Ba et al. [23], with a transmission power of 0 dBm, a gain
of 0 dBi (for both sensor and AP), and noise figure of 6.8 dB.
In order to obtain a model that is independent of the actual
deployment of stations, stations are randomly placed around
the AP within a maximum radius. The size of the stations’
transmit queues is configured to be 10 packets. As the RAW
optimization algorithm proposed in Section IV groups together
stations that use the same MCS, the model assumes a fixed
MCS. However, as RAW performance depends on the MCS
used, a different model is to be trained for each MCS that
stations are expected to use. We illustrate this by developing
a separate a high-throughput (HT) and low-throughput (LT)
model for two different MCS parameter sets. This can be

TABLE I: Simulation parameters used during training

PHY parameters Value
TX power (dBm) 0
TX/RX gain (dB) 0
Noise Figure (dB) 6.8
Coding method BCC
Propagation model Outdoor
Error rate model YansErrorRate
MAC parameters Value
Duration of DIFS (µs) 264
Duration of SIFS (µs) 160
Beacon interval (ms) 204.8
Size of transmission queue (packets) 10
Packet transmission interval (s) 1
Station distribution random
High-Throughput (HT) parameters value
Wi-Fi mode MCS1, 1 Mhz
Average payload size (bytes) 64
Topology radius (m) 200
Low-Throughput (LT) parameters value
Wi-Fi mode MCS9, 1 Mhz
Average payload size (bytes) 256
Topology radius (m) 80

trivially extended to other MCS values. For training simplicity,
we assume each station sends one packet per second. However,
we show in Section IV how this model can be used to calculate
RAW performance under arbitrary data transmission intervals.
Each experiment runs for 60 seconds of simulated time. As
RAW is configured in each beacon interval of 204.8 ms, the
results of every simulated configuration are averaged over 290
beacon intervals, ensuring the generality of the trained model.

C. Input parameters for RAW modeling

The surrogate model aims to accurately predict throughput
tr, for a RAW group r with duration dr, consisting of sr slots,
and with nr stations assigned to it. The resulting model can
be represented as a function F , as follows:

tr = F(nr, dr, sr) (1)

In addition to throughput, the simulator calculates a variety
of other performance metrics, such as packet loss, latency
and energy consumption. As such, the same methodology as
described here can be used to train a model for predicting
these other performance metrics. However, to simplify the
explanation, we focus on throughput.

To build the SUMO model, the input parameter space needs
to be defined. It consists of the minimum and maximum
value of each parameter, as well as a step size. The minimum
and maximum can be determined based on expert knowledge
of RAW performance, as well as legal values defined by
the IEEE 802.11ah standard. The range of the number of
stations nr in a RAW group should span from low to high
traffic conditions, so the trained model gives accurate results
independent of the density. From our previous studies on RAW
performance [3], and based on the parameters listed in Table I,
a minimum value of 60 and maximum value of 400 stations



TABLE II: Definition of the input parameter space

Parameter Min Step Max
nr 60 5 400
dr (µs) 40960 5120 204800
sr 1 5 50

per group were deemed to cover all possible traffic conditions.
The RAW group duration should be large enough to send at
least 1 packet successfully, and at most equal to the duration of
the beacon intervals. As such, dr is varied between 40960 µs
and 204800 µs. The number of slots sr is bound between 1 and
64, as per the IEEE standard. However, a very high number
of slots leaves not enough time within a slot to successfully
transmit a packet. As such, we limit sr between 1 and 50.

The actual step size of nr and sr is 1, as they are integer
variables. The parameter dr has a step size of 120 µs, as
defined in the 802.11ah standard. This results in a total input
space of 2.3 × 107 possible data points. This is too high
to properly train the model in a feasible amount of time.
To alleviate this, we experimentally determined a good step
size for each of the three parameters, leveraging the trade-off
between accuracy and training speed. For nr and sr a step size
of 5 was selected. It was found that the RAW duration dr has a
high sensitivity. As such, a small value of 5120 µs was chosen
as its step size. This results in a significantly reduced input
space of 25047 data points. Table II summarizes the selected
input parameter space. Note that a slot count sr equal to 0
is not legal, and sr therefore takes on values from the set
{1, 5, 10, ..., 50}. Results for data points outside the reduced
input parameter space are obtained via linear interpolation of
the two nearest data points included in the model.

IV. MODEL-BASED RAW OPTIMIZATION ALGORITHM

This section introduces the Model-Based RAW Optimiza-
tion Algorithm (MoROA). It relies on the same princi-
ples as our previously proposed RAW optimization solutions
TAROA [2] and Enhanced Traffic-Aware RAW Optimization
Algorithm (E-TAROA) [8]. As such, it is also traffic-aware
and able to adapt to changing traffic conditions. In contrast to
previous work, MoROA differentiates in using a model to find
the optimal RAW configuration parameters. This allows it to
better estimate the actual performance of a specific RAW con-
figuration. Moreover, MoROA supports heterogeneous stations
with variable MCS and packet size.

A. Overview

As in Section III, we assume an IoT sensor-based moni-
toring scenario. However, in contrast to the model presented
above, the algorithm is able to handle heterogeneous stations,
with variable transmission intervals, MCS, and packet sizes.
This is achieved, on one hand, by combining different trained
models for different types of stations, and on the other hand,
by transforming the performance metric output based on traffic
conditions. Moreover, the data transmission interval of sensor
stations can change over time (e.g., when an environmental
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Fig. 3: Overview of MoROA

event triggers a change in the sensor measurement interval).
The goal of RAW optimization is to assign stations to a set of
RAW groups with appropriate RAW parameter configurations,
in order to achieve the required objective (e.g., maximum
throughput, fairness, or minimum latency).

The proposed algorithm uses only information readily avail-
able at the AP. The concrete steps are illustrated in Figure 3.
First, the AP categorizes stations into different groups. In
MoROA, this is based on MCS and packet size, as these two
factors influence the minimum time needed to successfully
transmit a packet, and therefore the optimal slot duration.
However, other grouping strategies can be used as well.
Second, the AP determines the traffic of each station, and
selects the stations that are expected to have pending packets to
transmit in the next beacon interval. As this information is not
readily available to the AP, it has to be estimated. We apply
a traffic estimation method for IoT sensor traffic proposed in
our previous work [8]. Finally, we utilize a RAW performance
model function F (n, d, s) that takes as input the number of
stations n, the group duration d, and the number of slots s, and
gives as output some performance metric t (e.g., throughput).
This function serves as the basis for an optimization problem
that optimizes the RAW parameter decision variables n, d and
s, in order to maximize the selected performance metric. The
output of the algorithm is a RAW configuration consisting of
a set of groups, containing for each group a set of assigned
stations, group duration, and the number of slots.

Note that in the remainder of the description, we assume the
use of the surrogate model described in Section III. However,
any function F (n, d, s) that satisfies the above requirements
and that can be calculated in real-time could be used in
combination with MoROA.

B. RAW parameter optimization with heterogeneous stations

We assume a set of stations N associated with the AP. At
the start of each beacon interval b, stations are split into k
distinct clusters, with each cluster i ∈ [1, k] consisting of the
stations Ni ⊆ N . This can be achieved using any clustering



algorithm, based on a variety of distance metrics. We use
standard K-means clustering combined with the packet trans-
mission time as a distance metric. The packet transmission
time can be trivially calculated based on MCS and packet
size, both of which can be monitored at the AP. This results
in stations with the same MCS and average packet size to
be clustered together, which is an assumption of our current
surrogate model. In future work, we plan to train models
without this assumption, allowing a wider variety of clustering
approaches.

Subsequently, the AP determines which stations N b
i ⊆ Ni

of each cluster i are predicted to have packets queued for
transmission during the next beacon interval b. This can be
done using our previously proposed traffic estimation method
for IEEE 802.11ah [8]. We also define nbi =

∣∣N b
i

∣∣ as the
number of stations in cluster i predicted to have packets
queued for transmission during the next beacon interval b.
Finally, the algorithm assigns a RAW group to each cluster
i. It calculates the number of stations ni that will be allowed
to access the channel, the duration di of the group, and in how
many slots si to split the group. Finding the RAW parameter
values that maximize the chosen performance metric can be
formulated as an optimization problem. This problem has to
be solved jointly for all groups, as the chosen duration di of a
cluster i influences the maximum duration of all other groups
(i.e., the sum of all group durations should not be higher than
the beacon interval duration db).

As stated in Section III, a variety of objective functions can
be defined, as the model can be trivially trained for a variety
of metrics such as throughput, latency, energy consumption,
and packet loss. As an illustration, we define an objective
function that maximizes throughput as well as fairness across
groups in terms of packets delivery ratio. The packet delivery
ratio is defined as the ratio between the total number of
packets that are successfully received and the total number of
packets generated. However, other objectives such as airtime
fairness, latency minimization, or energy efficiency can easily
be defined as well. The problem can be formulated as follows:

max
(
α×Qp + (1− α)×Qf

)
(2)

With:

Qp =

k∑
i=1

Ft (ni, di, si)

nbi × li
(3)

And

Qf = min
i∈[1,k]

(
Ft(ni, di, si)

nbi × li

)
(4)

Subject to:
∀i ∈ [1, k] : ni ≤ nbi (5)

k∑
i=1

di ≤ db (6)

∀i ∈ [1, k] : psi <
ni × li

Ft (ni, di, si)
(7)

Where Ft (·) represents the RAW model function that calcu-
lates throughput. The variable li is the average packet size
of stations in cluster i. The continuous variable α ∈ [0, 1] is
a weight used to define the relative importance of both sub-
objectives. The parameter db represents the duration of the
beacon interval b. In Eq. 7, psi represents the successful packet
transmission probability of RAW group i. This constraint is
required, as the traffic estimation method we use, does not
work properly under high packet loss due to contention [2].
As such, we use psi = 0.99. When using other traffic estimation
methods, this constraint may not be needed.
Qf represents the fairness objective, while Qp represents

throughput. Both objectives are normalized as to align their
valid value range and simplify selection of α. Note that this
formulation assumes that stations will only attempt to transmit
one packet per beacon interval. This assumption generally
holds for sensor scenarios, where the throughput of individ-
ual stations is low [4]. In reality, some stations may have
multiple packets queued, especially when the traffic estimator
is still learning [8]. However, this has a negligible effect on
performance of the algorithm over longer periods. Currently,
MoROA does not consider the required sequentiality of AIDs
in the RPS element, as we consider AID reassignment a
separate issue left for future work.

The formulated problem is a non-linear constrained op-
timization problem with integer decision variables (i.e., ni,
di, and si). This can for example be solved using genetic
algorithms. A relaxed version of the problem with continuous
decision variables could alternatively be solved using for
example the Interior-Point method, in combination with a
rounding strategy to convert the resulting continuous decision
variable values to integers. Moreover, by taking the charac-
teristic 802.11ah into account, the value of ni and k can be
further limited, reducing the number of potential solutions and
therefore the solving time. The sum of ni for all the RAW
groups is limited to the maximum number of packet nbmax that
can be successfully transmitted during one beacon interval.
Due to the relatively low data rates supported by 802.11ah
(i.e., up to 7.8 Mbps for a 2 MHz bandwidth), nbmax ranges
from around 10 to 100 in practice. The number of groups k
cannot be higher than 42, as the maximum size of the RPS
elements is 256 bytes and at least 6 bytes are needed per group.

V. PERFORMANCE EVALUATION AND DISCUSSION

This section presents the evaluation results of the RAW
performance of surrogate model and the MoROA RAW op-
timization algorithm. First, the simulation setup is discussed.
Second, the accuracy of the surrogate model is compared to
simulation results. Finally, MoROA is evaluated and compared
to state of the art RAW algorithms, as well as the traditional
EDCA/DCF method of IEEE 802.11.

A. simulation setup

All evaluations are performed using our previously devel-
oped IEEE 802.11ah ns-3 module [7], based on ns-3 ver-
sion 3.23. We consider the same IoT scenario as described in
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points, sorted in ascending order in terms of estimation error

Section IV. The same default PHY and MAC layer parameters
used as shown in Table I. We consider both homogeneous
and heterogeneous scenarios. Homogeneous scenarios are
used to validate the surrogate model and compare to E-
TAROA [8]. In heterogeneous scenarios, half of the stations
use the high-thoughput (HT) settings and half of them use
the low-throughput settings (LT) listed in Table I. The data
transmission interval of each station is selected uniformly at
random from the interval [1, 10] seconds.

RAW performance is evaluated in terms of three metrics:
throughput, fairness, and latency. Throughput is calculated as
the average number of successfully received payload bytes by
the AP per second. Fairness between HT and LT stations in
terms of packet delivery ratio is evaluated using Jain’s fairness
index. Latency is defined as the average time between a packet
entering the transmit queue of the station and being received
by the AP. Each simulation runs for 600 seconds, and all
results are averaged over 10 iterations.

B. SUMO model validation

In this section we evaluate the training convergence of
the surrogate model, as well as its accuracy compared to
simulation results. Figure 4 plots the model’s cross validation
score as a function of the number of training samples used. The
cross validation score provides a measure for the accuracy of
the resulting model. A consistently low score signifies that the
training process has converged. Based on this graph, we can
conclude that for both the model with high-throughput (HT)
and low-throughput (LT) stations, convergence occurs after
around 1700 training samples have been used. The training
of the HT model stopped after 2370 iterations as it satisfied
the cross-validation stop conditions, i.e., 10 consecutive cross-
validation scores lower than or equal to 0.10 (2 digits of
precision). The training of the LT model stopped after the
maximum number of 2500 iterations, having only achieved
15 consecutive cross-validation scores between 0.11 and 0.12.
This comes down to about 0.0074% of all data points in the
input space (i.e., 2.3×107), and about 6.8% of the reduced data
space (i.e., 25047) from which samples were drawn during
training.

In order to ensure no over-fitting occurred, the surrogate
model also provides accurate results for data points outside
the reduced input space (cf. Table II), Figure 5 plots the
absolute error (in terms of throughput) of the surrogate model
compared to simulation results. In total, 2070 random data
points were generated from all 2.3 × 107 possible points.
The figure also plots the actual simulated throughput of each
point, to characterize the significance of the error. For the HT
model, the absolute throughput estimation error stays below
0.02 Mbps for the first 2000 points (i.e., 96.6% of all data
points). The absolute error only goes above 0.1 Mbps for
3 data points (i.e., 0.14%). Similarly, for the LT model, the
throughput estimation error stays below 0.004 Mbps for the
first 2000 data points, and only grows above 0.01 Mbps for
the worst 11 data points. In terms of the relative error (i.e.,
ratio between absolute throughput error and simulation results,
not depicted) of the surrogate model compared to simulations,
95% of all data points have an error below 6.6% and 5.4% for
the HT and LT model respectively. For both models, 98% of
the data points have a relative error below 10%. These results
validate the ability of the surrogate model to estimate RAW
performance accurately, even for points outside of the reduced
input data space used for initial training.

C. Homogeneous stations

In this section we evaluate the performance of MoROA for
homogeneous stations (in terms of MCS and packet size) for
a variety of traffic loads and station counts. Three different
total traffic loads are simulated for the LT scenario, i.e., T =
{0.095, 0.11, 0.15} Mbps. Given the packet payload size and
data rate, the maximum throughput that can be achieved is
about 0.124 Mbps for LT stations. As such, T = 0.15 Mbps
represents a near-saturated state, T = 0.11 Mbps represents
a medium traffic load and T = 0.095 Mbps results in low
traffic load. As E-TAROA was already shown to outperform
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Fig. 6: Performance comparison between MoROA and
E-TAROA for the LT scenarios with different traffic loads

and station counts

EDCA/DCF for homogeneous stations, we use E-TAROA as
a benchmark in this section [8].

Figure 6 depicts performance (i.e., throughput and latency)
of MoROA and E-TAROA. It clearly shows that, compared
to E-TAROA, MoROA improves the throughput under near
saturated traffic conditions for any number of stations. Under
medium traffic conditions, MoROA also improves perfor-
mance for a low number of stations. More importantly, better
latency performance is achieved in denser networks. For a
low traffic load (i.e., 0.095 Mbps), MoROA and E-TAROA
have nearly the same latency when there are less than 1024
stations. However, for 2048 stations, latency of MoROA is
about 32.5% lower. For higher traffic loads, MoROA has better
latency even in less dense networks (i.e., starting from 512 and
128 stations for traffic load 0.11 and 0.15 Mbps respectively).
The above results reveal that, by using surrogate modeling,
stations are assigned to RAW groups in a more optimal way.
This is due to the fact that E-TAROA derives its optimal
RAW parameters from a model under saturated state as an
approximation, rather than optimizing them for different traffic
conditions as the surrogate model does. This results in better
overall performance in terms of throughput and latency.
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Fig. 7: Performance comparison between MoROA and
EDCA/DCF, for a heterogeneous network.

D. Heterogeneous stations

In this section, we study the performance of MoROA in a
network with heterogeneous stations. Moreover, we evaluate
the effects of the α weight parameter on throughput and
fairness among the LT and HT station groups, for a variety of
network densities. As E-TAROA only supports stations with
the same MCS and packet size, the results of MoROA are
compared to EDCA/DCF in this case.

The comparison between MoROA and EDCA/DCF is de-
picted in figure 7. With a small number of stations, MoROA
and EDCA/DCF have the same throughput. With more than
600 stations, the throughput of EDCA/DCF stagnates to about
0.25 Mbps as the network becomes saturated. However, Mo-
ROA reduces the number of collisions, resulting in better
scaling behavior and a higher saturation limit. As a result, for
1800 stations throughput of MoROA is about 44% higher for
α = 0 and α = 0.25. If more focus is put on the throughput
objective, with α = 0.75, MoROA more than doubles through-
put compared to EDCA/DCF in highly dense networks (i.e.,
1800 stations), achieving a throughput increase of 108%. As
expected, EDCA/DCF achieves high fairness among HT and
LT stations due to its random access mechanism. For α ≤ 0.25
MoROA achieves a similar degree of fairness. However, for



α = 0.75 fairness of MoROA is significantly reduced, as it
prioritizes HT stations to maximize overall throughput.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel solution for real-time
RAW parameter optimization for IEEE 802.11ah, consisting of
two contributions. First, we present a new RAW performance
model, based on supervised surrogate modeling. It can be
easily trained on a limited set of labeled data samples, which
can be obtained through simulation. Moreover, it is very fast to
evaluate once trained, allowing it to be used for real-time RAW
parameter optimization. The second contribution encompasses
a RAW optimization algorithm called MoROA. It uses the
surrogate model to determine the optimal RAW configuration
under a variety of network and traffic conditions. Moreover,
it supports heterogeneous stations with different MCS and
average packet sizes.

The simulation results reveal three key points. First, the
built surrogate model for RAW gets high accuracy relative to
realistic simulation results. With a training set of 0.0074% of
all possible data points, a relative error less than 6.6% for
95% of the randomly tested RAW configurations is achieved.
Second, by using the built surrogate model for RAW, MoROA
achieves more stable throughput for both low- and high-
density deployments as well as up to 32.5% lower latency,
compared to the state of the art TAROA algorithm. Most
importantly, MoROA supports traffic-aware RAW optimization
for heterogeneous scenarios with variable MCS and packets
size, achieving up to twice the throughput of EDCA/DCF in
dense networks.

In future work, we aim to further extend the surrogate
modeling approach to support stations with different MCS and
average packet sizes not only across multiple groups, but also
within a single RAW group. This would further increase the
flexibility of the algorithm in finding an optimal RAW con-
figuration. Moreover, more advanced clustering metrics will
be evaluated and compared for use with MoROA. Finally, we
will investigate AID reassignment methods to allow MoROA
to satisfy the sequential AID requirement of the 802.11ah
standard.
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