182 research outputs found

    cGMP-Dependent Protein Kinase I Is Crucial for Angiogenesis and Postnatal Vasculogenesis

    Get PDF
    Background Endothelium-derived nitric oxide plays an important role for the bone marrow microenvironment. Since several important effects of nitric oxide are mediated by cGMP-dependent pathways, we investigated the role of the cGMP downstream effector cGMP-dependent protein kinase I (cGKI) on postnatal neovascularization. Methodology/Principal Findings In a disc neovascularization model, cGKI -/- mice showed an impaired neovascularization as compared to their wild-type (WT) littermates. Infusion of WT, but not cGKI -/- bone marrow progenitors rescued the impaired ingrowth of new vessels in cGKI-deficient mice. Bone marrow progenitors from cGKI -/- mice showed reduced proliferation and survival rates. In addition, we used cGKI alpha leucine zipper mutant (LZM) mice as model for cGKI deficiency. LZM mice harbor a mutation in the cGKI alpha leucine zipper that prevents interaction with downstream signaling molecules. Consistently, LZM mice exhibited reduced numbers of vasculogenic progenitors and impaired neovascularization following hindlimb ischemia compared to WT mice. Conclusions/Significance Our findings demonstrate that the cGMP-cGKI pathway is critical for postnatal neovascularization and establish a new role for cGKI in vasculogenesis, which is mediated by bone marrow-derived progenitors

    Differential Modulation of Angiogenesis by Erythropoiesis-Stimulating Agents in a Mouse Model of Ischaemic Retinopathy

    Get PDF
    BACKGROUND: Erythropoiesis stimulating agents (ESAs) are widely used to treat anaemia but concerns exist about their potential to promote pathological angiogenesis in some clinical scenarios. In the current study we have assessed the angiogenic potential of three ESAs; epoetin delta, darbepoetin alfa and epoetin beta using in vitro and in vivo models. METHODOLOGY/PRINCIPAL FINDINGS: The epoetins induced angiogenesis in human microvascular endothelial cells at high doses, although darbepoetin alfa was pro-angiogenic at low-doses (1-20 IU/ml). ESA-induced angiogenesis was VEGF-mediated. In a mouse model of ischaemia-induced retinopathy, all ESAs induced generation of reticulocytes but only epoetin beta exacerbated pathological (pre-retinal) neovascularisation in comparison to controls (p<0.05). Only epoetin delta induced a significant revascularisation response which enhanced normality of the vasculature (p<0.05). This was associated with mobilisation of haematopoietic stem cells and their localisation to the retinal vasculature. Darbepoetin alfa also increased the number of active microglia in the ischaemic retina relative to other ESAs (p<0.05). Darbepoetin alfa induced retinal TNFalpha and VEGF mRNA expression which were up to 4 fold higher than with epoetin delta (p<0.001). CONCLUSIONS: This study has implications for treatment of patients as there are clear differences in the angiogenic potential of the different ESAs

    Tumor Suppressor Pdcd4 Attenuates Sin1 Translation to Inhibit Invasion in Colon Carcinoma

    Get PDF
    Programmed cell death 4 (Pdcd4), a tumor invasion suppressor, is frequently downregulated in colorectal cancer and other cancers. In this study, we find that loss of Pdcd4 increases the activity of mammalian target of rapamycin complex 2 (mTORC2) and thereby upregulates Snail expression. Examining the components of mTORC2 showed that Pdcd4 knockdown increased the protein but not mRNA level of stress-activated-protein kinase interacting protein 1 (Sin1), which resulted from enhanced Sin1 translation. To understand how Pdcd4 regulates Sin1 translation, the SIN1 5′ untranslated region (5′UTR) was fused with luciferase reporter and named as 5′Sin1-Luc. Pdcd4 knockdown/knockout significantly increased the translation of 5′Sin1-Luc but not the control luciferase without the SIN1 5′UTR, suggesting that Sin1 5′UTR is necessary for Pdcd4 to inhibit Sin1 translation. Ectopic expression of wild-type Pdcd4 and Pdcd4(157–469), a deletion mutant that binds to translation initiation factor 4A (eIF4A), sufficiently inhibited Sin1 translation, and thus suppressed mTORC2 kinase activity and invasion in colon tumor cells. By contrast, Pdcd4(157–469)(D253A,D418A), a mutant that does not bind to eIF4A, failed to inhibit Sin1 translation, and consequently failed to repress mTORC2 activity and invasion. In addition, directly inhibiting eIF4A with silvestrol significantly suppressed Sin1 translation and attenuated invasion. These results indicate that Pdcd4-inhibited Sin1 translation is through suppressing eIF4A, and functionally important for suppression of mTORC2 activity and invasion. Moreover, in colorectal cancer tissues, the Sin1 protein but not mRNA was significantly upregulated while Pdcd4 protein was downregulated, suggesting that loss of Pdcd4 might correlate with Sin1 protein level but not mRNA level in colorectal cancer patients. Taken together, our work reveals a novel mechanism by which Pdcd4 inhibits Sin1 translation to attenuatemTORC2 activity and thereby suppresses invasion

    Serum Neurotrophin Profile in Systemic Sclerosis

    Get PDF
    International audienceBACKGROUND: Neurotrophins (NTs) are able to activate lymphocytes and fibroblasts; they can modulate angiogenesis and sympathic vascular function. Thus, they can be implicated in the three pathogenic processes of systemic sclerosis (SSc). The aims of this study are to determine blood levels of Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT-3) in SSc and to correlate them with clinical and biological data.METHODS: Serum samples were obtained from 55 SSc patients and 32 control subjects to measure NTs levels by ELISA and to determine their relationships with SSc profiles. FINDINGS: Serum NGF levels were higher in SSc patients (288.26 ± 170.34 pg/mL) than in control subjects (170.34 ± 50.8 pg/mL, p<0.001) and correlated with gammaglobulins levels and the presence of both anti-cardiolipin and anti-Scl-70 antibodies (p<0.05). In contrast, BDNF levels were lower in SSc patients than in controls (1121.9 ± 158.1 vs 1372.9 ± 190.9 pg/mL, p<0.0001), especially in pulmonary arterial hypertension and diffuse SSc as compared to limited forms (all p<0.05). NT-3 levels were similar in SSc and in the control group (2657.2 ± 2296 vs 2959.3 ± 2555 pg/mL, NS). BDNF levels correlated negatively with increased NGF levels in the SSc group (and not in controls). CONCLUSION: Low BDNF serum levels were not previously documented in SSc, particularly in the diffuse SSc subset and in patients with pulmonary hypertension or anti-Scl-70 antibodies. The negative correlation between NGF and BDNF levels observed in SSc and not in healthy controls could be implicated in sympathic vascular dysfunction in SSc

    Erythropoietin: a multimodal neuroprotective agent

    Get PDF
    The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    • …
    corecore