1,083 research outputs found

    Evaluation of the MERIS aerosol product over land with AERONET

    Get PDF
    The Medium Resolution Imaging Spectrometer (MERIS) launched in February 2002 on-board the ENVISAT spacecraft is making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical properties are retrieved over land using Look-Up Table (LUT) based algorithm and surface reflectances in the blue and the red spectral regions. We compared instantaneous aerosol optical thicknesses retrieved by MERIS in the blue and the red at locations containing sites within the Aerosol Robotic Network (AERONET). Between 2002 and 2005, a set of 500 MERIS images were used in this study. The result shows that, over land, MERIS aerosol optical thicknesses are well retrieved in the blue and poorly retrieved in the red, leading to an underestimation of the Angstrom coefficient. Correlations are improved by applying a simple criterion to avoid scenes probably contaminated by thin clouds. To investigate the weakness of the MERIS algorithm, ground-based radiometer measurements have been used in order to retrieve new aerosol models, based on their Inherent Optical Properties (IOP). These new aerosol models slightly improve the correlation, but the main problem of the MERIS aerosol product over land can be attributed to the surface reflectance model in the red

    Spatially-optimised fibre-reinforced composites with isosurface-controlled additive manufacturing constraints

    Get PDF
    A design approach accounting for manufac- turing constraints is described for spatially-optimised fibre-reinforced composites. The approach is based on the optimisation of local fibre orientation, the fibre vol- ume fraction and density based topology optimisation to determine the optimal design. A continuity equation is adopted to constrain the fibre orientation and ensure continuous fibres within the bounds of realistic fibre volume fractions. This results in a fibre orientation with a corresponding and controllable variation of the fibre volume fraction. In order to ensure the continuous fibre can be deposited, the manufacturability of the optimised results is ensured by introducing constraints controlled with two scalar fields to reconstruct fibre paths which are able to provide sufficient information to generate printer toolpaths. A cantilever beam problem is solved to show the advantage of the fibre reinforcement, the inclusion of manufacturing constraints, and the penalty in compliance due to the application of the manufac- turing constraints. The results show that the presented approach successfully guarantees the manufacturability with minimal loss of performance

    Coarse-grained molecular model for the glycosylphosphatidylinositol anchor with and without protein

    Get PDF
    Glycosylphosphatidylinositol (GPI) anchors are a unique class of complex glycolipids that anchor a great variety of proteins to the extracellular leaflet of plasma membranes of eukaryotic cells. These anchors can exist either with or without an attached protein called GPI-anchored protein (GPI-AP) both in vitro and in vivo. Although GPIs are known to participate in a broad range of cellular functions, it is to a large extent unknown how these are related to GPI structure and composition. Their conformational flexibility and micro-heterogeneity makes it difficult to study them experimentally. Simplified atomistic models are amenable to all-atom computer simulations in small lipid bilayer patches, but not suitable for studying their partitioning and trafficking in complex and heterogeneous membranes. Here, we present a coarse-grained model of GPI anchor constructed with a modified version of MARTINI force-field that is suited for modeling carbohydrates, proteins and lipids in an aqueous environment using MARTINI's polarizable water. The non-bonded interactions for sugars were re-parameterized by calculating their partitioning free energies between polar and apolar phases. In addition, sugar-sugar interactions were optimized by adjusting the second virial coefficients of osmotic pressures for solutions of glucose, sucrose and trehalose to match with experimental data. With respect to the conformational dynamics of GPI-anchored green fluoresccent protein, the accessible timescales are now at least an order of magnitude larger than for the all-atom system. This is particularly important for fine-tuning the mutual interactions of lipids, carbohydrates, and amino-acids when comparing to experimental results. We discuss the prospective use of the coarse-grained GPI model for studying protein-sorting and trafficking in membrane models

    A generalized equation for the calculation of receptor noise limited colour distances in n-chromatic visual systems

    Get PDF
    Researchers must assess similarities and differences in colour from an animal's eye view when investigating hypotheses in ecology, evolution and behaviour. Nervous systems generate colour perceptions by comparing the responses of different spectral classes of photoreceptor through colour opponent mechanisms, and the performance of these mechanisms is limited by photoreceptor noise. Accordingly, the receptor noise limited (RNL) colour distance model of Vorobyev and Osorio (Vorobyev & Osorio 1998 Proc. R. Soc. Lond. B 265, 351?358 (doi:10.1098/rspb.1998.0302)) generates predictions about the discriminability of colours that agree with behavioural data, and consequently it has found wide application in studies of animal colour vision. Vorobyev and Osorio (1998) provide equations to calculate RNL colour distances for animals with di-, tri- and tetrachromatic vision, which is adequate for many species. However, researchers may sometimes wish to compute RNL colour distances for potentially more complex colour visual systems. Thus, we derive a simple, single formula for the computation of RNL distance between two measurements of colour, equivalent to the published di-, tri- and tetrachromatic equations of Vorobyev and Osorio (1998), and valid for colour visual systems with any number of types of noisy photoreceptors. This formula will allow the easy application of this important colour visual model across the fields of ecology, evolution and behaviour.publishersversionPeer reviewe

    Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated

    Get PDF
    Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research

    The importance of side branches of glycosylphosphatidylinositol anchors : a molecular dynamics perspective

    Get PDF
    Many proteins are anchored to the cell surface of eukaryotes using a unique family of glycolipids called glycosylphosphatidylinositol (GPI) anchors. These glycolipids also exist without a covalently bound protein, in particular on the cell surfaces of protozoan parasites where they are densely populated. GPIs and GPI-anchored proteins participate in multiple cellular processes such as signal transduction, cell adhesion, protein trafficking and pathogenesis of Malaria, Toxoplasmosis, Trypanosomiasis and prion diseases, among others. All GPIs share a common conserved glycan core modified in a cell-dependent manner with additional side glycans or phosphoethanolamine residues. Here, we use atomistic molecular dynamic simulations and perform a systematic study to evaluate the structural properties of GPIs with different side chains inserted in lipid bilayers. Our results show a flop-down orientation of GPIs with respect to the membrane surface and the presentation of the side chain residues to the solvent. This finding agrees well with experiments showing the role of the side residues as active epitopes for recognition of GPIs by macrophages and induction of GPI-glycan-specific immune responses. Protein-GPI interactions were investigated by attaching parasitic GPIs to Green Fluorescent Protein. GPIs are observed to recline on the membrane surface and pull down the attached protein close to the membrane facilitating mutual contacts between protein, GPI and the lipid bilayer. This model is efficient in evaluating the interaction of GPIs and GPI-anchored proteins with membranes and can be extended to study other parasitic GPIs and proteins and develop GPI-based immunoprophylaxis to treat infectious diseases

    Therapy escape mechanisms in the malignant prostate

    Get PDF
    AbstractAndrogen receptor (AR) is the main target for prostate cancer therapy. Clinical approaches for AR inactivation include chemical castration, inhibition of androgen synthesis and AR antagonists (anti-androgens). However, treatment resistance occurs for which an important number of therapy escape mechanisms have been identified. Herein, we summarise the current knowledge of molecular mechanisms underlying therapy resistance in prostate cancer. Moreover, the tumour escape mechanisms are arranged into the concepts of target modification, bypass signalling, histologic transformation, cancer stem cells and miscellaneous mechanisms. This may help researchers to compare and understand same or similar concepts of therapy resistance in prostate cancer and other cancer types

    Elevated serum biotinidase activity in hepatic glycogen storage disorders-A convenient biomarker

    Get PDF
    Summary: An elevated serum biotinidase activity in patients with glycogen storage disease (GSD) type Ia has been reported previously. The aim of this work was to investigate the specificity of the phenomenon and thus we expanded the study to other types of hepatic GSDs. Serum biotinidase activity was measured in a total of 68 GSD patients and was compared with that of healthy controls (8.7 ±10; range 7.0-10.6mU/ml; n=6). We found an increased biotinidase activity in patients with GSD Ia (17.7 ±3.9; range: 11.4-24.8; n=21), GSD I non-a (20.9 ±5.6; range 14.6-26.0; n=4), GSD III (12.5 ±-3.6; range 7.8-19.1; n=3), GSD VI (15.4 ±-2.0; range 14.1-17.7; n=) and GSD IX (14.0 ±-3.8; range: 7.5-21.6; n=22). The sensitivity of this test was 100% for patients with GSD Ia, GSD I non-a and GSD VI, 62% for GSD III, and 77% for GSD IX, indicating reduced sensitivity for GSD III and GSD IX, respectively. In addition, we found elevated biotinidase activity in all sera from 5 patients with Fanconi-Bickel Syndrome (15.3 ±-3.7; range 11.0-19.4). Taken together, we propose serum biotinidase as a diagnostic biomarker for hepatic glycogen storage disorder
    • …
    corecore