119 research outputs found

    Energy savings in hospital patient rooms: the role of windows size and glazing properties

    Get PDF
    Abstract Large windows with increased exposure to daylight have strong positive effects on the well-being of building occupants and can provide energy savings when appropriate glazing specifications are employed. The work evaluates the impact of different window sizes and glazing on heating and cooling energy needs in a hospital patient room, in order to investigate the energy savings achievable by adopting wider openings and to identify the most effective glazing types. Simulations have been conducted for different commercially available glazing systems. The authors analyzed the energy performance of a base case window with 25% Window-to-Wall Ratio (WWR) and of a wall-to-ceiling window with 77% WWR, in rooms facing the four different orientations and located in Bologna, Italy. Results show that the adoption of wider windows with appropriate glazing can lower the heating and cooling energy demand

    Effective elimination of Staphylococcal contamination from hospital surfaces by a bacteriophage-probiotic sanitation strategy: a monocentric study.

    Get PDF
    Persistent contamination of hospital surfaces and antimicrobial resistance (AMR) are recognized major causes of healthcare-associated infections (HAI). We recently showed that a probiotic-based sanitation (PCHS) can stably decrease surface pathogens and reduce AMR and HAIs. However, PCHS action is slow and non-specific. By contrast, bacteriophages have been proposed as a decontamination method as they can rapidly attack specific targets, but their routine application has never been tested. Here we analyzed the feasibility and effectiveness of phage addition to PCHS sanitation, aiming to obtain a rapid and stable abatement of specific pathogens in the hospital environment. Staphylococcal contamination in the bathrooms of General Medicine wards was analyzed, being such areas the most contaminated and Staphylococci the most prevalent bacteria in such settings. Results showed that a daily phage application by nebulization induced a rapid and significant decrease of Staphylococcus spp. load on treated surfaces, up to 97% more than PCHS alone (p<0.001), suggesting that such system might be considered as a part of prevention and control strategies, to counteract outbreaks of specific pathogens and prevent associated infections

    Next-generation sequencing and PCR technologies in monitoring the hospital microbiome and its drug resistance

    Get PDF
    The hospital environment significantly contributes to the onset of healthcare-associated infections (HAIs), which represent one of the most frequent complications occurring in healthcare facilities worldwide. Moreover, the increased antimicrobial resistance (AMR) characterizing HAI-associated microbes is one of the human health’s main concerns, requiring the characterization of the contaminating microbial population in the hospital environment. The monitoring of surface microbiota in hospitals is generally addressed by microbial cultural isolation. However, this has some important limitations mainly relating to the inability to define the whole drug-resistance profile of the contaminating microbiota and to the long time period required to obtain the results. Hence, there is an urgent need to implement environmental surveillance systems using more effective methods. Molecular approaches, including next-generation sequencing and PCR assays, may be useful and effective tools to monitor microbial contamination, especially the growing AMR of HAI-associated pathogens. Herein, we summarize the results of our recent studies using culture-based and molecular analyses in 12 hospitals for adults and children over a 5-year period, highlighting the advantages and disadvantages of the techniques used

    Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance

    Get PDF
    The high and sometimes inappropriate use of disinfectants and antibiotics has led to alarming levels of Antimicrobial Resistance (AMR) and to high water and hearth pollution, which today represent major threats for public health. Furthermore, the current SARS-CoV-2 pandemic has deeply influenced our sanitization habits, imposing the massive use of chemical disinfectants potentially exacerbating both concerns. Moreover, super-sanitation can profoundly influence the environmental microbiome, potentially resulting counterproductive when trying to stably eliminate pathogens. Instead, environmentally friendly procedures based on microbiome balance principles, similar to what applied to living organisms, may be more effective, and probiotic-based eco-friendly sanitation has been consistently reported to provide stable reduction of both pathogens and AMR in treated-environments, compared to chemical disinfectants. Here, we summarize the results of the studies performed in healthcare settings, suggesting that such an approach may be applied successfully also to non-healthcare environments, including the domestic ones, based on its effectiveness, safety, and negligible environmental impact

    Impact of a probiotic-based cleaning product on the microbiological profile of broiler litters and chicken caeca microbiota

    Get PDF
    ABSTRACT This study investigated for the first time the decontamination efficacy of a probiotic-based cleaning product containing Bacillus subtilis, Bacillus pumilus, and Bacillus megaterium spores on fresh and reused broiler litters during 3 rearing cycles of 6 wk each. Moreover, the impact of reused litters treated with the cleaning product on the chicken caeca microbiota was assessed at the end of the rearing cycles in comparison to untreated litter. The Bacillus spores provided with the cleaning treatment were able to successfully colonize the reused poultry litters, decreasing the mean counts of total aerobic bacteria, Enterobacteriaceae, and coagulase positive Staphylococci. The decrease of Enterobacteriaceae, mainly represented by the genus Escherichia, was also observed in the caeca of broilers reared on reused litters treated with the cleaning product. Moreover, the treatment retained the caeca content of Ruminococcaceae and Faecalibacterium as well as the level of biodiversity among the bacteria genera colonizing the caeca of animals reared on reused litter. Overall, the results of this study highlight a positive effect of the probiotic-based cleaning strategy on the microbial decontamination of reused litters and on broiler caeca stability, thereby enhancing animal health and prevention of poultry diseases

    Introduction of NGS in Environmental Surveillance for Healthcare-Associated Infection Control

    Get PDF
    The hospital environment significantly contributes to the onset of healthcare associated infections (HAIs), representing the most frequent and severe complications related to health care. The monitoring of hospital surfaces is generally addressed by microbial cultural isolation, with some performance limitations. Hence there is need to implement environmental surveillance systems using more effective methods. This study aimed to evaluate next-generation sequencing (NGS) technologies for hospital environment microbiome characterization, in comparison with conventional and molecular methods, in an Italian pediatric hospital. Environmental samples included critical surfaces of randomized rooms, surgical rooms, intensive care units and delivery rooms. The resistome of the contaminating population was also evaluated. NGS, compared to other methods, detected with higher sensitivity the environmental bacteria, and was the only method able to detect even unsearched bacteria. By contrast, however, it did not detect mycetes, nor it could distinguish viable from dead bacteria. Microbiological and PCR methods could identify and quantify mycetes, in addition to bacteria, and PCR could define the population resistome. These data suggest that NGS could be an effective method for hospital environment monitoring, especially if flanked by PCR for species identification and resistome characterization, providing a potential tool for the control of HAI transmission

    Impact of a probiotic-based hospital sanitation on antimicrobial resistance and HAI-associated antimicrobial consumption and costs: A multicenter study

    Get PDF
    Purpose: Antimicrobial resistance (AMR) is one of the major threats to human health, and the high frequency of resistant pathogens in the hospital environment can contribute to the transmission of difficult-to-treat health care-associated infections (HAIs). We recently reported that, compared with conventional chemical cleaning, the use of a microbial-based sanitation strategy (Probiotic Cleaning Hygiene System [PCHS]) was associated with remodulation of hospital microbiota and reduction of HAI incidence. Here, we aimed to analyze the impact of PCHS on AMR and related effects, such as HAI-associated antimicrobial drug consumption and costs. Patients and methods: Five Italian hospitals, enrolled in a multicenter study where conventional sanitation methods were replaced with PCHS, were included in the analysis. The study period included a 6-month observation for each sanitation type. Surface microbiota AMR was analyzed using microarray, nested PCR, antibiogram, and microdilution tests. Drug consumption data and related costs were obtained from the medical records of all hospitalized patients affected by HAIs. Results: PCHS use was associated with up to 99% decrease of the AMR genes harbored by surface hospital microbiota, independently of the resistance types originally present in each individual setting (Pc<0.01). Functional assays confirmed the molecular data, demonstrating a 33%–100% decrease of resistant strains depending on the antibiotic type. Antimicrobial drug consumption associated with HAI onset showed a global 60.3% decrease, with a 75.4% decrease of the associated costs. Conclusion: The spread of AMR in the hospital environment can be limited by the use of sanitation methods to remodulate the hospital microbiota, leading to lower antimicrobial consumption and costs. This approach might be considered as part of broader infection prevention and control strategies

    Characterization of the Pathogenic Potential of the Beach Sand Microbiome and Assessment of Quicklime as a Remediation Tool

    Get PDF
    Beach sand may act as a reservoir for potential human pathogens, posing a public health risk. Despite this, the microbiological monitoring of sand microbiome is rarely performed to determine beach quality. In this study, the sand microbial population of a Northern Adriatic Sea beach sand was profiled by microbiological (CFU counts) and molecular methods (WGS, microarray), showing significant presence of potential human pathogens including drug-resistant strains. Consistent with these results, the potential of quicklime as a restoring method was tested in vitro and on-field. Collected data showed that adding 1-3% quicklime (w/w) to sand provided an up to -99% of bacteria, fungi, and viruses, in a dose- and time-dependent manner, till 45 days post-treatment. In conclusion, data suggest that accurate monitoring of sand microbiome may be essential, besides water, to assess beach quality and safety. Moreover, first evidences of quicklime potential for sand decontamination are provided, suggesting its usage as a possible way to restore the microbiological quality of sand in highly contaminated areas

    Next-generation sequencing and PCR technologies in monitoring the hospital microbiome and its drug resistance

    Get PDF
    The hospital environment significantly contributes to the onset of healthcare-associated infections (HAIs), which represent one of the most frequent complications occurring in healthcare facilities worldwide. Moreover, the increased antimicrobial resistance (AMR) characterizing HAI-associated microbes is one of the human health’s main concerns, requiring the characterization of the contaminating microbial population in the hospital environment. The monitoring of surface microbiota in hospitals is generally addressed by microbial cultural isolation. However, this has some important limitations mainly relating to the inability to define the whole drug-resistance profile of the contaminating microbiota and to the long time period required to obtain the results. Hence, there is an urgent need to implement environmental surveillance systems using more effective methods. Molecular approaches, including next-generation sequencing and PCR assays, may be useful and effective tools to monitor microbial contamination, especially the growing AMR of HAI-associated pathogens. Herein, we summarize the results of our recent studies using culture-based and molecular analyses in 12 hospitals for adults and children over a 5-year period, highlighting the advantages and disadvantages of the techniques used

    Reducing healthcare-associated infections incidence by a probiotic-based sanitation system: A multicentre, prospective, intervention study

    Get PDF
    Healthcare Associated Infections (HAI) are a global concern, further threatened by the increasing drug resistance of HAI-associated pathogens. On the other hand, persistent contamination of hospital surfaces contributes to HAI transmission, and it is not efficiently controlled by conventional cleaning, which does not prevent recontamination, has a high environmental impact and can favour selection of drug-resistant microbial strains. In the search for effective approaches, an eco-sustainable probiotic-based cleaning system (Probiotic Cleaning Hygiene System, PCHS) was recently shown to stably abate surface pathogens, without selecting antibiotic-resistant species. The aim of this study was to determine whether PCHS application could impact on HAI incidence. A multicentre, pre-post interventional study was performed for 18 months in the Internal Medicine wards of six Italian public hospitals (January 1st 2016-June 30th 2017). The intervention consisted of the substitution of conventional sanitation with PCHS, maintaining unaltered any other procedure influencing HAI control. HAI incidence in the pre and post-intervention period was the main outcome measure. Surface bioburden was also analyzed in parallel. Globally, 11,842 patients and 24,875 environmental samples were surveyed. PCHS was associated with a significant decrease of HAI cumulative incidence from a global 4.8% (284 patients with HAI over 5,930 total patients) to 2.3% (128 patients with HAI over 5,531 total patients) (OR = 0.44, CI 95% 0.35-0.54) (P<0.0001). Concurrently, PCHS was associated with a stable decrease of surface pathogens, compared to conventional sanitation (mean decrease 83%, range 70-96.3%), accompanied by a concurrent up to 2 Log drop of surface microbiota drug-resistance genes (P<0.0001; Pc = 0.008). Our study provides findings which support the impact of a sanitation procedure on HAI incidence, showing that the use of a probiotic-based environmental intervention can be associated with a significant decrease of the risk to contract a HAI during hospitalization. Once confirmed in larger experiences and other target populations, this eco-sustainable approach might be considered as a part of infection control and prevention (IPC) strategies. Trial registration-ISRCTN International Clinical Trials Registry, ISRCTN58986947
    • …
    corecore