3,788 research outputs found

    Orbital parameters of V 0332+53 from 2015 giant outburst data

    Full text link
    We present the updated orbital solution for the transient Be X-ray binary V 0332+53 comple- menting historical measurements with the data from the gamma-ray burst monitor onboard Fermi obtained during the outburst in June-October 2015. We model the observed changes in the spin- frequency of the pulsar and deduce the orbital parameters of the system. We significantly improve existing constrains and show that contrary to the previous findings no change in orbital parameters is required to explain the spin evolution of the source during the outbursts in 1983, 2005 and 2015. The reconstructed intrinsic spin-up of the neutron star during the latest outburst is found to be comparable with previosly observed values and predictions of the accretion torque theory.Comment: 3 pages, 2 figures, submitted to A&

    Ten years of INTEGRAL observations of the hard X-ray emission from SGR 1900+14

    Get PDF
    We exploited the high sensitivity of the INTEGRAL IBIS/ISGRI instrument to study the persistent hard X-ray emission of the soft gamma-ray repeater SGR 1900+14, based on ~11.6 Ms of archival data. The 22-150 keV INTEGRAL spectrum can be well fit by a power law with photon index 1.9 +/- 0.3 and flux F_x = (1.11 +/- 0.17)E-11 erg/cm^2/s (20-100 keV). A comparison with the 20-100 keV flux measured in 1997 with BeppoSAX, and possibly associated with SGR 1900+14, shows a luminosity decrease by a factor of ~5. The slope of the power law above 20 keV is consistent within the uncertainties with that of SGR 1806-20, the other persistent soft gamma-ray repeater for which a hard X-ray emission extending up to 150 keV has been reported.Comment: Accepted for publication in Astronomy & Astrophysics. 4 page

    BeppoSAX observations of XTE J1946+274

    Full text link
    We report on the BeppoSAX monitoring of a giant outburst of the transient X-ray pulsar XTE J1946+274 in 1998. The source was detected with a flux of ~ 4 x 10^(-9) erg cm^(-2) s^(-1) (in 0.1 - 120 keV range). The broadband spectrum, typical for accreting pulsars, is well described by a cutoff power law with a cyclotron resonance scattering feature (CRSF) at ~ 38 keV. This value is consistent with earlier reports based on the observations with Suzaku at factor of ten lower luminosity, which implies that the feature is formed close to the neutron star surface rather than in the accretion column. Pulsations with P ~ 15.82 s were observed up to ~ 70 keV. The pulse profile strongly depends on energy and is characterised by a "soft" and a "hard" peaks shifted by half period, which suggests a strong phase dependence of the spectrum, and that two components with roughly orthogonal beam patterns are responsible for the observed pulse shape. This conclusion is supported by the fact that the CRSF, despite its relatively high energy, is only detected in the spectrum of the soft peak of the pulse profile. Along with the absence of correlation of the line energy with luminosity, this could be explained in the framework of the recently proposed "reflection" model for CRSF formation. However more detailed modelling of both line and continuum formation are required to confirm this interpretation

    Optical and near-infrared photometric monitoring of the transient X-ray binary A0538-66 with REM

    Get PDF
    The transient Be/X-ray binary A0538-66 shows peculiar X-ray and optical variability. Despite numerous studies, the intrinsic properties underlying its anomalous behaviour remain poorly understood. Since 2014 September we are conducting the first quasi-simultaneous optical and near-infrared photometric monitoring of A0538-66 in seven filters with the Rapid Eye Mount (REM) telescope, aiming to understand the properties of this binary system. We found that the REM lightcurves show fast flares lasting one or two days that repeat almost regularly every ~16.6 days, the orbital period of the neutron star. If the optical flares are powered by X-ray outbursts through photon reprocessing, the REM lightcurves indicate that A0538-66 is still active in X-rays: bright X-ray flares (L_x > 1E37 erg/s) could be observable during the periastron passages. The REM lightcurves show a long-term variability that is especially pronounced in the g band and decreases with increasing wavelength, until it no longer appears in the near-infrared lightcurves. In addition, A0538-66 is fainter with respect to previous optical observations most likely due to the higher absorption of the stellar radiation of a denser circumstellar disc. On the basis of the current models, we interpret these observational results with a circumstellar disc around the Be star observed nearly edge-on during a partial depletion phase. The REM lightcurves also show short-term variability on timescales of ~1 day possibly indicative of perturbations in the density distribution of the circumstellar disc caused by the tidal interaction with the neutron star.Comment: Accepted for publication in Astronomy & Astrophysic

    Exploring the role of X-ray reprocessing and irradiation in the anomalous bright optical outbursts of A0538-66

    Get PDF
    In 1981, the Be/X-ray binary (Be/XRB) A0538-66 showed outbursts characterized by high peak luminosities in the X-ray and optical bands. The optical outbursts were qualitatively explained as X-ray reprocessing in a gas cloud surrounding the binary system. Since then, further important information about A0538-66 have been obtained, and sophisticated photoionization codes have been developed to calculate the radiation emerging from a gas nebula illuminated by a central X-ray source. In the light of the new information and tools available, we studied again the enhanced optical emission displayed by A0538-66 to understand the mechanisms responsible for these unique events among the class of Be/XRBs. We performed about 10^5 simulations of a gas envelope photoionized by an X-ray source. We assumed for the shape of the gas cloud either a sphere or a circumstellar disc observed edge-on. We studied the effects of varying the main properties of the envelope and the influence of different input X-ray spectra on the optical/UV emission emerging from the photoionized cloud. We compared the computed spectra with the IUE spectrum and photometric UBV measurements obtained during the outburst of 29 April 1981. We also explored the role played by the X-ray heating of the surface of the donor star irradiated by the X-ray emission of the neutron star (NS). We found that reprocessing in a spherical cloud with a shallow radial density distribution can reproduce the optical/UV emission. To our knowledge, this configuration has never been observed either in A0538-66 during other epochs or in other Be/XRBs. We found, contrary to the case of most other Be/XRBs, that the optical/UV radiation produced by the X-ray heating of the surface of the donor star irradiated by the NS is non-negligible, due to the particular orbital parameters of this system that bring the NS very close to its companion.Comment: Accepted for publication in Astronomy & Astrophysics. Abstract abridged to meet arXiv requirement

    Chemical studies of the passivation of GaAs surface recombination using sulfides and thiols

    Get PDF
    Steady-state photoluminescence, time-resolved photoluminescence, and x-ray photoelectron spectroscopy have been used to study the electrical and chemical properties of GaAs surfaces exposed to inorganic and organic sulfur donors. Despite a wide variation in S2–(aq) concentration, variation of the pH of aqueous HS–solutions had a small effect on the steady-state n-type GaAs photoluminescence intensity, with surfaces exposed to pH=8, 0.1-M HS–(aq) solutions displaying comparable luminescence intensity relative to those treated with pH=14, 1.0-M Na2S·9H2O(aq). Organic thiols (R-SH, where R=–CH2CH2SH or –C6H4Cl) dissolved in nonaqueous solvents were found to effect increases in steady-state luminescence yields and in time-resolved luminescence decay lifetimes of (100)-oriented GaAs. X-ray photoelectron spectroscopy showed that exposure of GaAs surfaces to these organic systems yielded thiols bound to the GaAs surface, but such exposure did not remove excess elemental As and did not form a detectable As2S3 overlayer on the GaAs. These results imply that complete removal of As0 or formation of monolayers of As2S3 is not necessary to effect a reduction in the recombination rate at etched GaAs surfaces. Other compounds that do not contain sulfur but that are strong Lewis bases, such as methoxide ion, also improved the GaAs steady-state photoluminescence intensity. These results demonstrate that a general class of electron-donating reagents can be used to reduce nonradiative recombination at GaAs surfaces, and also imply that prior models focusing on the formation of monolayer coverages of As2S3 and Ga2S3 are not adequate to describe the passivating behavior of this class of reagents. The time-resolved, high level injection experiments clearly demonstrate that a shift in the equilibrium surface Fermi-level energy is not sufficient to explain the luminescence intensity changes, and confirm that HS– and thiol-based reagents induce substantial reductions in the surface recombination velocity through a change in the GaAs surface state recombination rate

    A non-pulsating neutron star in the supernova remnant HESS J1731-347 / G353.6-0.7 with a carbon atmosphere

    Full text link
    Context: The CCO candidate in the center of the supernova remnant shell HESS J1731-347 / G353.6-0.7 shows no pulsations and exhibits a blackbody-like X-ray spectrum. If the absence of pulsations is interpreted as evidence for the emitting surface area being the entire neutron star surface, the assumption of the measured flux being due to a blackbody emission translates into a source distance that is inconsistent with current estimates of the remnant's distance. Aims: With the best available observational data, we extended the pulse period search down to a sub-millisecond time scale and used a carbon atmosphere model to describe the X-ray spectrum of the CCO and to estimate geometrical parameters of the neutron star. Methods: To search for pulsations we used data of an observation of the source with XMM-Newton performed in timing mode. For the spectral analysis, we used earlier XMM-Newton observations performed in imaging mode, which permits a more accurate treatment of the background. The carbon atmosphere models used to fit the CCO spectrum are computed assuming hydrostatic and radiative equilibria and take into account pressure ionization and the presence of spectral lines. Results: Our timing analysis did not reveal any pulsations with a pulsed fraction above ~8% down to 0.2 ms. This finding further supports the hypothesis that the emitting surface area is the entire neutron star surface. The carbon atmosphere model provides a good fit to the CCO spectrum and leads to a normalization consistent with the available distance estimates of the remnant. The derived constraints on the mass and radius of the source are consistent with reasonable values of the neutron star mass and radius. After the CCO in Cas A, the CCO in HESS J1731-347 / G353.6-0.7 is the second object of this class for which a carbon atmosphere model provides a consistent description of X-ray emission.Comment: 6 pages, 5 figures, accepted for publication in Astronomy&Astrophysic

    Properties and observability of glitches and anti-glitches in accreting pulsars

    Get PDF
    Several glitches have been observed in young, isolated radio pulsars, while a clear detection in accretion-powered X-ray pulsars is still lacking. We use the Pizzochero snowplow model for pulsar glitches as well as starquake models to determine for the first time the expected properties of glitches in accreting pulsars and their observability. Since some accreting pulsars show accretion-induced long-term spin-up, we also investigate the possibility that anti-glitches occur in these stars. We find that glitches caused by quakes in a slow accreting neutron star are very rare and their detection extremely unlikely. On the contrary, glitches and anti-glitches caused by a transfer of angular momentum between the superfluid neutron vortices and the non-superfluid component may take place in accreting pulsars more often. We calculate the maximum jump in angular velocity of an anti-glitch and we find that it is expected to be about 1E-5 - 1E-4 rad/s. We also note that since accreting pulsars usually have rotational angular velocities lower than those of isolated glitching pulsars, both glitches and anti-glitches are expected to have long rise and recovery timescales compared to isolated glitching pulsars, with glitches and anti-glitches appearing as a simple step in angular velocity. Among accreting pulsars, we find that GX 1+4 is the best candidate for the detection of glitches with currently operating X-ray instruments and future missions such as the proposed Large Observatory for X-ray Timing (LOFT).Comment: Accepted for publication in Astronomy & Astrophysics. 6 pages. Minor changes to match the final A&A versio
    • …
    corecore