4,440 research outputs found

    Thermo-kinetic approach of single-particles and clusters involving anomalous diffusion under viscoelastic response

    Full text link
    We present a thermo-kinetic description of anomalous diffusion of single-particles and clusters in a viscoelastic medium in terms of a non-Markovian diffusion equation involving memory functions. The scaling behaviour of these functions is analyzed by considering hydrodynamics and cluster-size space random walk arguments. We explain experimental results on diffusion of Brownian particles in the cytoskeleton, in cluster-cluster aggregation and in a suspension of micelles.Comment: To be published in the Journal of Physical Chemistry

    Wave modes excited by photospheric p-modes and mode conversion in a multi-loop system

    Full text link
    Context. Waves are ubiquitous in the solar corona and there are indications that they are excited by photospheric p-modes. However, it is unclear how p-modes in coronal loops are converted to sausage modes and transverse (kink) modes, which are observed in the corona. Aims. We aim to investigate how those wave modes are excited in the lower corona by photospheric acoustic waves. Methods. We built 3D magnetohydrostatic loop systems with multiple inclinations spanning from the photosphere to the lower corona. We then simulated these atmospheres with the MANCHA code, in which we perturb the equilibrium with a p-mode driver at the bottom of the domain. By splitting the velocity perturbation into components longitudinal, normal, and azimuthal to the magnetic flux surfaces we can study wave behavior. Results. In vertical flux tubes, we find that deformed fast sausage surface waves and slow sausage body waves are excited. In inclined flux tubes fast kink surface waves, slow sausage body waves, and either a fast sausage surface wave or a plane wave are excited. In addition, we calculate a wave conversion factor (0 ≤\le C ≤\le 1) from acoustic to magnetic wave behavior by taking the ratio of the mean magnetic energy flux to the sum of the mean magnetic and acoustic energy flux and compare it to a commonly used theoretical conversion factor. We find that between magnetic field inclinations of 10∘^\circ to 30∘^\circ those two methods lie within 40%. For smaller inclinations the absolute deviation is smaller than 0.1.Comment: 14 pages, 14 figure

    Discrete variational integrators and optimal control theory

    Get PDF
    A geometric derivation of numerical integrators for optimal control problems is proposed. It is based in the classical technique of generating functions adapted to the special features of optimal control problems.Comment: 17 page

    High frequency waves in the corona due to null points

    Full text link
    This work aims to understand the behavior of non-linear waves in the vicinity of a coronal null point. In previous works we have showed that high frequency waves are generated in such magnetic configuration. This paper studies those waves in detail in order to provide a plausible explanation of their generation. We demonstrate that slow magneto-acoustic shock waves generated in the chromosphere propagate through the null point and produce a train of secondary shocks that escape along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 mHz. We speculate that this frequency may be sensitive to the atmospheric parameters in the corona and therefore can be used to probe the structure of this solar layer

    Tulczyjew's triples and lagrangian submanifolds in classical field theories

    Get PDF
    In this paper the notion of Tulczyjew's triples in classical mechanics is extended to classical field theories, using the so-called multisymplectic formalism, and a convenient notion of lagrangian submanifold in multisymplectic geometry. Accordingly, the dynamical equations are interpreted as the local equations defining these lagrangian submanifolds.Comment: 29 page

    Geometric numerical integration of nonholonomic systems and optimal control problems

    Get PDF
    A geometric derivation of numerical integrators for nonholonomic systems and optimal control problems is obtained. It is based in the classical technique of generating functions adapted to the special features of nonholonomic systems and optimal control problems.Comment: 6 pages, 1 figure. Submitted to IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Sevilla 200
    • …
    corecore